# Trying to wrap my arms around copulas

Cross Validated Asked by eSurfsnake on January 7, 2022

This topic is dense with notation that makes things a bit confusing. But is this the correct interpretation?

Suppose we have two jointly distributed random variables – $X$ and $Y$ – of arbitrary (but let’s assume known) CDFs. The problem is the joint probability for any pair of values ($x$,$y$) is not simply $F_X(x)F_Y(y)$ because they are not independent. That actual joint distribution seems to be often called $H(x,y)$.

Now, it seems to me that the copula, in the end, is simply a function such that $C(F_X(x),F_Y(y))$ actually maps to the value for $H(x,y)$.

It accomplishes this by sort of running the marginals “backwards”, and also baking in the jointness into another joint distribution specified on $[0,1]^{2}$ where the marginals are uniform.

So, in the end, all it is is a mapping that has the right “correction” for jointness, where all you need give it (once you have it calculated) is the naïve values for $F_X(x)$ and $F_Y(y)$, and it delivers up the actual $H(x,y)$? In other words, Sklar’s theorem guarantees there is a one-to-one mapping between $F_X(x)$ and $F_Y(y)$ to $H(x,y)$, and the copula captures all that information?

You probably haven't got an answer because everything you said is correct! As you said, Sklar's Theorem implies that everything about the "jointness" of the distribution is encoded by the copula, so once you know the $$F_X(x)$$ and $$F_Y(y)$$ and have a copula, then you know the joint cumulative distribution function.

$$H(x,y) = P(X le x quad & quad Y le y) = C(F_X(x), F_Y(y))$$

Or, if things are differentiable and you prefer to express things in terms of densities, you can write the joint density as

$$h(x, y) = color{red}{frac{partial^2 C}{partial x partial y}(F_X(x), F_Y(y))}f_X(x)f_Y(y)$$

where you can thing of the red term as the "correction" for non-independence.

Answered by Flounderer on January 7, 2022

(I originally posted this as a comment. While I think this is more of a comment than an answer, this interesting question has gone two years without any answers, and a short answer is better than no answer.)

Think of the density on the unit square as describing relationships between quantiles of the marginal distributions. If you look at a Gaussian copula for a high, positive correlation, when $$X$$ has a low quantile (say $$0.1$$), it’s likely that $$Y$$ will, too, and it is unlikely that $$Y$$ will have a high quantile. Ditto for when $$X$$ has a high quantile (say $$0.9$$).

Answered by Dave on January 7, 2022

## Related Questions

### Normalize sample to match the mean and the standard deviation

1  Asked on November 22, 2020

### Cross validation and parameter tuning

5  Asked on November 20, 2020 by sana-sudheer

### How does the Dyna Q algorithm works?

1  Asked on November 19, 2020 by nolw38

### Posterior mean of $mu$ in Bayesian Hierarchical model (Poisson-Gamma)

0  Asked on November 17, 2020 by maverick-meerkat

### Contextualising post-hoc tests following repeated one-way ANOVA

1  Asked on November 17, 2020 by dc_liv

### Interpreting SAS output – Roots of AR Characteristic Polynomial

0  Asked on November 14, 2020 by user819749

### ReLU outperforming Softplus

1  Asked on November 12, 2020 by mike-land

### Latest research and explanation on how semi-supervised learning is performing better than supervised?

0  Asked on November 12, 2020 by aaryan-bhagat

### How do I interpret model fit for ordinal regression when AICc and likelihood ratio test conflict?

0  Asked on November 9, 2020 by monica

### Obtaining the complete confidence intervals of binary interacted variables

1  Asked on November 9, 2020 by arun

### What test shall I use to validate the use of a certain score to predict my outcome in a survival analysis?

1  Asked on November 8, 2020

### Individual sampling weights and percentages

1  Asked on November 6, 2020 by seth-c

### he_normal (Keras) is truncated when kaiming_normal_ (pytorch) is not

1  Asked on November 3, 2020 by londumas

### How do I treat my Confounding variables in my multivariate Linear Mixed Model?

1  Asked on October 29, 2020 by thomas-lordick

### Bayesian Likelihood function range

1  Asked on October 29, 2020 by shamm

### Convergence of bootstrap standard error estimate (one of the problems from Efron’s book)

0  Asked on October 26, 2020 by mattjosh

### Zero inflated continuous outcome variables

0  Asked on October 26, 2020 by michaelkyei

### How to test paired observations

1  Asked on October 23, 2020 by doug-fir

### How to project a mxn matrix (m features, n samples) onto a space generated by a mxk matrix (m features, k factors)?

0  Asked on October 20, 2020 by minstein