Area between parabola and a line that don't intersect? 0 or infinity

Mathematics Asked on January 5, 2022

Came across a problem on social media,

Find the area of the region bounded by a parabola, $y = x^2 + 6$ and
line a line $y = 2x + 1$.

I tried to draw it on paper and they didn’t seem to intersect. So I drew them online (attached screenshot). My answer was 0, but someone said that we assume they meet at infinity and answer would be infinity. Parallel lines don’t diverge like these do, so I think we can assume that they would never interest at infinity.

enter image description here

One Answer

$$x^2 + 6 = 2x + 1$$ $$x^2 - 2x + 5$$ $$frac{2 pm sqrt{4 - 4(5)}}{2}$$

As you can see by analyzing the discriminant, this quadratic has no real roots, so there are no points at which the two curves intersect. You could say that the area between the curves tends to infinity. As was stated in the comments, whoever posted this most likely intended to include more information/restrictions.

Also, these two curves will not "meet at infinity." Both diverge as $x$ gets arbitrarily large

Answered by N. Bar on January 5, 2022

Add your own answers!

Related Questions

Arg of $(1-isqrt{3})^6$. Did I do it right?

3  Asked on December 16, 2020 by cocacola


Coloring Two Faces of an Icosahedron

2  Asked on December 16, 2020 by user826216


A boundary condition

0  Asked on December 15, 2020 by lorenzo-andreaus


A complete bipartite graph is unique

1  Asked on December 15, 2020 by itsnotme


Behaviour of orthogonal matrices

2  Asked on December 15, 2020 by a9302c


Winning money from random walks?

0  Asked on December 15, 2020 by maximilian-janisch


There are operations that are not rotations?

0  Asked on December 14, 2020 by raxi-ral


Ask a Question

Get help from others!

© 2023 All rights reserved. Sites we Love: PCI Database, MenuIva, UKBizDB, Menu Kuliner, Sharing RPP, SolveDir