# Calculus of Variations: Looking for theorem that ensures that a given variational problem has maxima and minima

Mathematics Asked by user on August 3, 2020

Is there a theorem that garuantees that a variational problem $$I[y] = int_a^bF(x,y,y’)dx$$ has local/ global maxima and minima?

Perhaps similar to the extreme value theorem for continuous functions on compact sets?!

Specifically once I obtain a solution to the Euler- Lagrange equations how can I show that such a solution is an extemum/ minimum / maximum?

Are there similar theorems for constrained problems?
Many thanks!

If $$F$$ is a continuous function and your constraint set is compact, the Weierstrass theorem still applies. The problem is that compactness in function spaces is much more complicated than in finite-dimensional vector spaces.

What it sounds like you really want is second-order sufficient conditions: "Specifically once I obtain a solution to the Euler- Lagrange equations how can I show that such a solution is an extemum/ minimum / maximum?"

The corresponding versions of the SOSC's for optimal control come in two flavors. Arrow's sufficient conditions are on the fundamentals of the problem, while Mangasarian's are on the optimized Hamiltonian. This is a pretty good reference, if you are at a university:

https://www.jstor.org/stable/2525753?seq=1

Otherwise, googling around for "Arrow-Mangasarian Sufficient Conditions, Optimal Control" will turn up thousands of references.

Correct answer by user807138 on August 3, 2020

## Related Questions

### $f:X to Y$ is a continuous map. Suppose it induces an isomorphism $f_*:H_*(X) to H_*(Y)$. Does that imply $f:X to Y$ is a homotopy equivalence?

2  Asked on December 24, 2020 by zero2infinity

### Show that if $gcd(|G|,|H|) = 1$, then $text{Aut}(G times H) cong text{Aut}(G) times text{Aut}(H)$.

1  Asked on December 24, 2020 by la-rias

### Calculating the Fundamental Group of a CW Complex with Attaching Maps of Varying Degrees

1  Asked on December 24, 2020

### prove the ratio of the line in the question

1  Asked on December 24, 2020 by sniperking

### prove the following inequality for integral

1  Asked on December 24, 2020 by yi-li

### Verify: Prove that $(A times B) cap (C times D) = (A cap C) times (B cap D)$

0  Asked on December 24, 2020

### Standard Basis of $SU(2)$–where does the 1/2 come from?

1  Asked on December 24, 2020 by jmj

### Explicit function definition with the normal vector included

2  Asked on December 24, 2020 by user719062

### Nonlinear system for origin translation

1  Asked on December 23, 2020 by toy

### Check if line lies between two planes

1  Asked on December 23, 2020 by michalt38

### Distance of two points in a rotated rectangle

1  Asked on December 23, 2020 by fygo

### Smash product of CW complexes

2  Asked on December 23, 2020 by lucas-giraldi-a-coimbra

### Intersection of irreducible hypersurface with tangent hyperplane in a non-singular point is singular

0  Asked on December 23, 2020 by lupidupi

### Prime subfield of a field is $mathbb{Z}/pmathbb{Z}$ or $mathbb{Q}$.

1  Asked on December 23, 2020 by eraldcoil

### Give example of 2 standard uniform random variables with given Pearson correlation

1  Asked on December 23, 2020 by jeff-nguyen

### Proof of a concept over Distributions

1  Asked on December 23, 2020 by hans-andr-marie-stamm

### Unsure what this Eigenvalue means?

0  Asked on December 23, 2020 by tybg

### Give an example of a set A with equivalence relations R and S for which S∘R ≠ R∘S

1  Asked on December 22, 2020 by harry-solomon

### Question on permutation cycles and order of a permutation

0  Asked on December 22, 2020 by ramesh-karl

### Inequality involving medians

2  Asked on December 22, 2020 by daniel-kawai