TransWikia.com

Clarification about proof involving product/sum manipulation

Mathematics Asked by user859358 on February 13, 2021

In this post, the following simplification was made:
$$2pi isum_klim_{xto ia_k}(x-ia_k)
frac{x^2e^{itx}}{prod_j(x^2+a_j^2)}\
=-pisum_ke^{-ta_k}a_ksum_{jneq k}frac1{a_j^2-a_k^2}.$$

What I have done is the following, but am unsure why it is wrong:
$$
2pi isum_klim_{xto ia_k}(x-ia_k)
frac{x^2e^{itx}}{prod_k(x^2+a_k^2)}\
=2pi isum_k frac{(ia_k)^2e^{-ta_k}}{prod_k (ia_k+ia_k)}.
$$

Even after reduction it does not matched the stated closed form. Where does the $sum_{ineq j}$ come from? I am unfamiliar with this notation.

Thank you!

One Answer

For a given $k$, the $k$-th inner term of the sum is (before taking the limit) $$begin{split} (x-ia_k)frac{x^2e^{itx}}{prod_j(x^2+a_j^2)} &= frac {(x - ia_k)}{x^2+a_k^2} cdotfrac{x^2e^{itx}}{prod_{j neq k}(x^2 + a_j^2)}\ &=frac {1}{x+ia_k}cdotfrac{x^2e^{itx}}{prod_{jneq k}(x^2+a_j^2)}\ end{split}$$ where we used the fact that $x^2+a_k^2=(x-ia_k)(x+ia_k)$.

This implies $$lim_{xrightarrow ia_k}(x-ia_k)frac{x^2e^{itx}}{prod_j(x^2+a_j^2)}=-frac 1 {2ia_k}frac{a_k^2e^{-ta_k}}{prod_{jneq k}(a_j^2-a_k^2)}$$ which yields the final result.

Correct answer by Stefan Lafon on February 13, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP