TransWikia.com

Computing $int_{alpha}frac{1}{(z-a)^n(z-b)^m}dz$ using Cauchy integral formula

Mathematics Asked by Vic Ryan on February 8, 2021

Let $alpha(t) = re^{it}$ where $|a|<r<|b|$ and $t in [0,2pi]$. I’d like to compute
$$int_{alpha}frac{1}{(z-a)^n(z-b)^m}dz n, m in mathbb{N}.$$
It appears that the answer is
$$2pi i (-1)^m{n + m -2 choose n-1}frac{1}{(b-a)^{n+m-1}}.$$
I try to compute it but I’m not sure how that’s the final answer. Here is my attempt:

Let $f(z) = frac{1}{(z-b)^m}$, then by Cauchy integral formula
$$int_{alpha}frac{1}{(z-a)^n(z-b)^m}dz = int_{alpha}frac{f(z)}{(z-a)^n}dz = frac{2pi i}{(n-1)!}f^{(n-1)}(a).$$
Trying to find an expression of $f^{(n-1)}(z)$
begin{align*}
f^{(1)} &= -mfrac{1}{(z-b)^{m-1}}\
f^{(2)} &= m(m-1)frac{1}{(z-b)^{m-2}}\
f^{(3)} &= -m(m-1)(m-2)frac{1}{(z-b)^{m-3}}\
&vdots\
f^{(n-1)} &= (-1)^{n-1}m(m-1)(m-2)dotsc(m-n + 2)frac{1}{(a-b)^{m-n+1}}
end{align*}

I think this should be correct. So,
begin{align*}
int_{alpha}frac{1}{(z-a)^n(z-b)^m}dz &= frac{2pi i}{(n-1)!}(-1)^{n-1}m(m-1)(m-2)dotsc(m-n + 2)frac{1}{(a-b)^{m-n+1}}\
&= frac{2pi i}{(n-1)!}(-1)^{2n-2-m}m(m-1)(m-2)dotsc(m-n + 2)frac{1}{(b-a)^{m-n+1}}\
&=frac{2pi i}{(n-1)!}(-1)^{m}m(m-1)(m-2)dotsc(m-n + 2)frac{1}{(b-a)^{m-n+1}}.
end{align*}

But the exponent on $(b-a)$ is not the same. Further, I have no clue how I can get the binomial coefficient. Writing out the binomial coefficient in the given answer doesn’t seem to help me either.
$${n + m -2 choose n-1} = frac{(n+m-2)!}{(n-1)!(m-1)!} = frac{(n+m-2)(n+m-3)dotsc 2cdot 1}{(n-1)!(m-1)!} $$

NOTE: I haven’t learned residue theorem yet.

2 Answers

Answering my own question, thanks to the comments. Let $f(z) = frac{1}{(z-b)^m}$, then by Cauchy integral formula $$int_{alpha}frac{1}{(z-a)^n(z-b)^m}dz = int_{alpha}frac{f(z)}{(z-a)^n}dz = frac{2pi i}{(n-1)!}f^{(n-1)}(a).$$ Trying to find an expression of $f^{(n-1)}(z)$ begin{align*} f^{(1)} &= -mfrac{1}{(z-b)^{m+1}}\ f^{(2)} &= m(m+1)frac{1}{(z-b)^{m+2}}\ f^{(3)} &= -m(m+1)(m+2)frac{1}{(z-b)^{m+3}}\ &vdots\ f^{(n-1)} &= (-1)^{n-1}m(m+1)(m+2)dotsc(m+n - 2)frac{1}{(a-b)^{m+n-1}} end{align*} So, begin{align*} int_{alpha}frac{1}{(z-a)^n(z-b)^m}dz &= frac{2pi i}{(n-1)!}(-1)^{n-1}m(m+1)(m+2)dotsc(m+n - 2)frac{1}{(a-b)^{m+n-1}}\ &= frac{2pi i}{(n-1)!}(-1)^{n-1-m-n+1}m(m+1)(m+2)dotsc(m+n - 2)frac{1}{(b-a)^{m+n-1}}\ &=frac{2pi i}{(n-1)!}(-1)^{-m}m(m+1)(m+2)dotsc(m+n - 2)frac{1}{(b-a)^{m+n-1}}\ &=frac{2pi i}{(n-1)!}(-1)^{m}m(m+1)(m+2)dotsc(m+n - 2)frac{1}{(b-a)^{m+n-1}}. end{align*} Note that $${n + m -2 choose n-1} = frac{(n+m-2)(n+m-3)dotsc m}{(n-1)!}.$$ Hence, $$int_{alpha}frac{1}{(z-a)^n(z-b)^m}dz = 2pi i(-1)^m{n + m -2 choose n-1}frac{1}{(b-a)^{m+n-1}}.$$

Answered by Vic Ryan on February 8, 2021

$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},} newcommand{braces}[1]{leftlbrace,{#1},rightrbrace} newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack} newcommand{dd}{mathrm{d}} newcommand{ds}[1]{displaystyle{#1}} newcommand{expo}[1]{,mathrm{e}^{#1},} newcommand{ic}{mathrm{i}} newcommand{mc}[1]{mathcal{#1}} newcommand{mrm}[1]{mathrm{#1}} newcommand{on}[1]{operatorname{#1}} newcommand{pars}[1]{left(,{#1},right)} newcommand{partiald}[3][]{frac{partial^{#1} #2}{partial #3^{#1}}} newcommand{root}[2][]{,sqrt[#1]{,{#2},},} newcommand{totald}[3][]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}} newcommand{verts}[1]{leftvert,{#1},rightvert}$ $ds{bbox[5px,#ffd]{}}$


begin{align} &bbox[5px,#ffd]{left. oint_{verts{z} = r},, {dd z over pars{z - a}^{,n}pars{z - b}^{,m}} ,rightvert_{substack{n, m in mathbb{N} \[1mm] verts{a} < r < verts{b}}}} \[5mm] = & 2piicon{Res}bracks{{1 over pars{z - a}^{,n} pars{z - b}^{,m}}, z = a}label{1}tag{1} end{align}
begin{align} mbox{Note that} & {1 over pars{z - b}^{m}} = {1 over bracks{a - b + pars{z - a}}^{m}} \[5mm] & = {1 over pars{a - b}^{m}} bracks{1 + {z - a over a - b}}^{-m} \[5mm] & = {1 over pars{a - b}^{m}} sum_{k = 0}^{infty}{-m choose k} pars{z - a over a - b}^{k} end{align} (ref{1}) becomes begin{align} &bbox[5px,#ffd]{left. oint_{verts{z} = r},, {dd z over pars{z - a}^{,n}pars{z - b}^{,m}} ,rightvert_{substack{n, m in mathbb{N} \[1mm] verts{a} < r < verts{b}}}} \[5mm] = & 2piic{1 over pars{a - b}^{m}} bracks{{-m choose n - 1} pars{1 over a - b}^{n - 1}} \[5mm] = & 2piic{1 over pars{a - b}^{m + n - 1}} {m + bracks{n - 1} - 1 choose n - 1}pars{-1}^{n - 1} \[5mm] = & bbx{2piic,pars{-1}^{m} {n + m - 2 choose n - 1} {1 over pars{b - a}^{n + m - 1}}} \ & end{align}

Answered by Felix Marin on February 8, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP