# construct matrix group in GAP

Mathematics Asked by YONG YANG on January 3, 2022

I am having trouble construct the following group in GAP. It is a solvable primitive linear group acting on V where |V|=5^8. We know the Fitting subgroup is of order 2^6*4 (central product of extra special group E of order 2^7 with a cyclic group of order 4). On top of E/Z(E) we have a group A of order 6^4 acts on E/Z(E). Here A itself has a normal extra special group D of order 27 and A/D acts on D/Z(D) and A/D cong GL(2,3). In some sense, G would be a maximal solvable primitive group on V=5^8.

If it is possible, I need similar construction in |V|=7^8.

I cannot easily tell you how I did this calculation, but in case it is helpful anyway, here is the group that you are looking for.

F1 := Identity(GF(5));;
G := Subgroup (GL(8,5), [
F1*[
[ 1, 1, 4, 4, 2, 3, 2, 3 ],
[ 3, 2, 2, 3, 4, 4, 4, 4 ],
[ 3, 3, 3, 3, 1, 4, 4, 1 ],
[ 1, 4, 1, 4, 3, 3, 2, 2 ],
[ 3, 2, 2, 3, 1, 1, 1, 1 ],
[ 1, 1, 4, 4, 3, 2, 3, 2 ],
[ 1, 4, 1, 4, 2, 2, 3, 3 ],
[ 3, 3, 3, 3, 4, 1, 1, 4 ]
],
F1*[
[ 2, 0, 4, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 2, 0, 4, 0 ],
[ 0, 0, 0, 0, 3, 0, 4, 0 ],
[ 2, 0, 1, 0, 0, 0, 0, 0 ],
[ 0, 3, 0, 1, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 2, 0, 4 ],
[ 0, 0, 0, 0, 0, 2, 0, 1 ],
[ 0, 2, 0, 1, 0, 0, 0, 0 ]
]
]);;
gap> Size(G);
331776
gap> StructureDescription(G);
"((((((C2 x ((C4 x C2) : C2)) : C2) : C2) : ((C3 x C3) : C3)) :  Q8) : C3) : C4"


Answered by Derek Holt on January 3, 2022

## Related Questions

### Is a surface curve made of planar points necessarily a line?

1  Asked on January 29, 2021 by mk7

### How to solve $sqrt{x!y!}=xy$ for $(x,y)inmathbb{Z}_{geq0}timesmathbb{Z}_{geq0}$?

3  Asked on January 29, 2021 by ramez-hindi

### Intuition for fractions of the localization of a non integral domain

1  Asked on January 29, 2021 by siddharth-bhat

### Proving origin to be removable singularity(Proof verification)

2  Asked on January 29, 2021

### Relationship between constants so that the center of curvature of the helix is contained in the cylinder

1  Asked on January 28, 2021

### An identity between integral

1  Asked on January 28, 2021 by inoc

### How to find the least in $E^{circ}=frac{5S^g}{162}+frac{C^circ}{50}+frac{2pi^2}{360}textrm{rad}$?

1  Asked on January 28, 2021 by chris-steinbeck-bell

### In what sense do we say two functions are equal?

0  Asked on January 28, 2021 by ziqi-fan

### $P (| X |> 1) = P (| X | <1)$

1  Asked on January 28, 2021

### Sequentially open sets but not open

1  Asked on January 28, 2021 by t-i

### Simplify $logleft(1+frac{x_i^2}{nu}right)$ with a $log(1+x)$ rule?

2  Asked on January 28, 2021

### Finding an Extremal for a function.

1  Asked on January 28, 2021 by zeroflank

### Isomorphism between group of homeomorphisms where $X nsim Y$

2  Asked on January 28, 2021

### Basis of the field $E$=$mathbb{Q}(sqrt{6}i-sqrt{5})$.

3  Asked on January 27, 2021 by questmath

### Limit points of the set ${frac {varphi(n) }n : nin mathbb{N}}$

1  Asked on January 27, 2021 by user-492177

### $forall epsilon >0,exists A in mathcal{A}$ such that $E subset A$ and $mu(A setminus E) < epsilon$

1  Asked on January 27, 2021 by user21

### Generalized Collatz: divide out by $2$’s and $3$’s, otherwise $5n+1?$

0  Asked on January 27, 2021 by rivers-mcforge

### How is the Rodrigues formula $L_n^k(x)=frac{e^x x^{-k}}{n!}frac{d^n}{dx^n}(e^{-x}x^{n+k})$ derived?

1  Asked on January 27, 2021 by almhz

### Absolute values of a closed set’s elements

2  Asked on January 27, 2021 by sicmath