# Evaluate $int frac{2-x^3}{(1+x^3)^{3/2}} dx$

Mathematics Asked by Dharmendra Singh on August 5, 2020

Evaluate:
$$int frac{2-x^3}{(1+x^3)^{3/2}} dx$$

I could find the integral by setting it equal to $$frac{ax+b}{(1+x^3)^{1/2}}$$
and differentiating both sides w.r.t.$$x$$ as
$$frac{2-x^3}{(1+x^3)^{3/2}}=frac{a(1+x^3)^{3/2}-(1/2)(ax+b)3x^2(1+x^3)^{-1/2}}{(1+x^3)}$$$$=frac{a-ax^3/2-3bx^2}{(1+x^3)^{3/2}}$$
Finally by setting $$a=2,b=0$$, we get $$I(x)=frac{2x}{(1+x^3)^{1/2}}+C$$

The question is: How to do it otherswise?

$$int frac{2-x^3}{(1+x^3)^{3/2}} dx=int frac{2x^{-3}-1}{(x^{-2}+x)^{3/2}} dx$$ Now substitute $$t=x^{-2}+x$$.

EDIT: Always try to manipulate such integrands like this. Start by taking out the highest power from the denominator. If that doesn't work, then move on to taking out lesser and lesser powers. If all endeavors fail, resort to good old techniques.

Correct answer by Sameer Baheti on August 5, 2020

$$int frac{2-x^3}{(1+x^3)^{3/2}} dx=int frac{frac{1}{x^3}(2-x^3)}{frac1{x^3}left(1+x^3right)^{3/2}} dx$$ $$=int frac{left(frac{2}{x^3}-1right)dx}{left(frac{1}{x^2}+xright)^{3/2}}$$ $$=-int frac{dleft(frac{1}{x^2}+xright)}{left(frac{1}{x^2}+xright)^{3/2}}$$ $$=- frac{left(frac{1}{x^2}+xright)^{-frac32+1}}{-frac32+1}+C$$ $$=frac{2}{sqrt{frac1{x^2}+x}}+C$$ $$=bbox[15px, #ffd, border:1px solid green]{frac{2x}{sqrt{1+x^3}}+C}$$

Answered by Harish Chandra Rajpoot on August 5, 2020

Split the integral and integrate by parts:

begin{align}I = intdfrac{2 - x^3}{left(1 + x^3right)^{3/2}},mathrm dx &equivintdfrac2{left(1 + x^3right)^{3/2}},mathrm dx - intdfrac{x^2}{left(1 + x^3right)^{3/2}}x,mathrm dx \ &= intdfrac2{left(1 + x^3right)^{3/2}},mathrm dx - left(-dfrac{2x}{3left(1 + x^3right)^{1/2}} + dfrac23intdfrac{1 + x^3}{left(1 + x^3right)^{3/2}},mathrm dxright) \ &= intdfrac{6 - 2 - 2x^3}{3left(1 + x^3right)^{3/2}},mathrm dx + dfrac{2x}{3sqrt{1 + x^3}} \ &= dfrac23intdfrac{2 - x^3}{left(1 + x^3right)^{3/2}},mathrm dx + dfrac{2x}{3sqrt{1 + x^3}} \ &= dfrac23I + dfrac{2x}{3sqrt{1 + x^3}} \ implies I &= dfrac{2x}{sqrt{1 + x^3}}end{align}

Answered by an4s on August 5, 2020

@ClaudeLeibovici has a point, because what you did is a well-worn technique, that of using an Ansatz. The basic idea is to make an educated guess as to the form of the solution, then make it more specific with your calculations, as you did. So it's worth understanding what makes a specific Ansatz a sensible starting point:

• It makes sense to assume a $$(1+x^2)^{-3/2}$$ factor results from differentiating $$(1+x^2)^{-1/2}$$: if nothing else, integration by parts makes sense of that.
• You could have started with a more general Ansatz, $$I(x)=f(x)(1+x^3)^{-3/2}$$, so the problem is equivalent to $$(x^3+1)f^prime-tfrac32x^2f=2-x^3$$. Since constant $$f$$ doesn't solve this, it's natural to try a linear $$f$$ next, which worked for you.

Maybe this answer isn't what you were looking for, but it's important to understand how to use an Ansatz as more than an accident.

Answered by J.G. on August 5, 2020

## Related Questions

### Show $log{a_n}rightarrowlog{a}$ as ${nrightarrowinfty}$

1  Asked on January 27, 2021 by smejak

### Determine whether a set is Invariant, Positively invariant or negatively invariant

1  Asked on January 27, 2021 by bernard-mathews

### Upper bound for the total curvature of a shortest path in the boundary of a convex polyhedron in $mathbb{R}^3$.

1  Asked on January 27, 2021 by hk-lee

### Sum of all solvable ideals of a Lie algebra and radical

1  Asked on January 26, 2021

### Let $f: (mathbb{Z}_{24}, +) rightarrow (mathbb{Z}_{36}, +)$ be a group homomorphism. How many elements are there in the kernel of $f$?

2  Asked on January 26, 2021 by user828643

### Ideal of a group

2  Asked on January 26, 2021 by kelalaka

### It does not say that A and B is mutually inclusive, so p(AUB) is between 1/2 and 1, right?

2  Asked on January 26, 2021 by t298

### Monodromy element: Why that name?

0  Asked on January 26, 2021

### Algebraic Operations with Summation within summation

1  Asked on January 26, 2021 by rom

### Prove monotone convergence theorem when $int |f_1| dmu < infty$ holds

1  Asked on January 26, 2021 by evan-kim

### Prove that $frac{1}{x+1}$ is positive.

3  Asked on January 26, 2021 by m-choy

### For a projection $Pi$, is $text{tr}(Pi X)leq text{tr}(X)$?

2  Asked on January 26, 2021 by user1936752

### Does the homotopy pullback of a diagram of spaces who are homotopy equivalent to CW-complexes have the homotopy type of a CW complex?

0  Asked on January 26, 2021

### Prove that $f(x)=frac{1}{x}$ is uniformly continuous on $(frac{1}{2},infty)$

1  Asked on January 25, 2021 by siobhan-ren

### Action of a Lie subgroup

0  Asked on January 25, 2021

### Is the next map a quotient map?

1  Asked on January 25, 2021 by erika21148

### Number of iterations to find the root of $x^3+2x-54$ using Newton’s Method

1  Asked on January 25, 2021 by gibbs

### Convergence of $int_mathbb{R^n} frac1{x^p}dx$

1  Asked on January 25, 2021 by user854662

### Connection between max and min of symmetric random variables

1  Asked on January 25, 2021 by losleon