Mathematics Asked by Dharmendra Singh on August 5, 2020
Evaluate:
$$int frac{2-x^3}{(1+x^3)^{3/2}} dx$$
I could find the integral by setting it equal to $$frac{ax+b}{(1+x^3)^{1/2}}$$
and differentiating both sides w.r.t.$x$ as
$$frac{2-x^3}{(1+x^3)^{3/2}}=frac{a(1+x^3)^{3/2}-(1/2)(ax+b)3x^2(1+x^3)^{-1/2}}{(1+x^3)}$$$$=frac{a-ax^3/2-3bx^2}{(1+x^3)^{3/2}}$$
Finally by setting $a=2,b=0$, we get $$I(x)=frac{2x}{(1+x^3)^{1/2}}+C$$
The question is: How to do it otherswise?
$$int frac{2-x^3}{(1+x^3)^{3/2}} dx=int frac{2x^{-3}-1}{(x^{-2}+x)^{3/2}} dx$$ Now substitute $t=x^{-2}+x$.
EDIT: Always try to manipulate such integrands like this. Start by taking out the highest power from the denominator. If that doesn't work, then move on to taking out lesser and lesser powers. If all endeavors fail, resort to good old techniques.
Correct answer by Sameer Baheti on August 5, 2020
$$int frac{2-x^3}{(1+x^3)^{3/2}} dx=int frac{frac{1}{x^3}(2-x^3)}{frac1{x^3}left(1+x^3right)^{3/2}} dx$$ $$=int frac{left(frac{2}{x^3}-1right)dx}{left(frac{1}{x^2}+xright)^{3/2}}$$ $$=-int frac{dleft(frac{1}{x^2}+xright)}{left(frac{1}{x^2}+xright)^{3/2}}$$ $$=- frac{left(frac{1}{x^2}+xright)^{-frac32+1}}{-frac32+1}+C$$ $$=frac{2}{sqrt{frac1{x^2}+x}}+C$$ $$=bbox[15px, #ffd, border:1px solid green]{frac{2x}{sqrt{1+x^3}}+C}$$
Answered by Harish Chandra Rajpoot on August 5, 2020
Split the integral and integrate by parts:
$$begin{align}I = intdfrac{2 - x^3}{left(1 + x^3right)^{3/2}},mathrm dx &equivintdfrac2{left(1 + x^3right)^{3/2}},mathrm dx - intdfrac{x^2}{left(1 + x^3right)^{3/2}}x,mathrm dx \ &= intdfrac2{left(1 + x^3right)^{3/2}},mathrm dx - left(-dfrac{2x}{3left(1 + x^3right)^{1/2}} + dfrac23intdfrac{1 + x^3}{left(1 + x^3right)^{3/2}},mathrm dxright) \ &= intdfrac{6 - 2 - 2x^3}{3left(1 + x^3right)^{3/2}},mathrm dx + dfrac{2x}{3sqrt{1 + x^3}} \ &= dfrac23intdfrac{2 - x^3}{left(1 + x^3right)^{3/2}},mathrm dx + dfrac{2x}{3sqrt{1 + x^3}} \ &= dfrac23I + dfrac{2x}{3sqrt{1 + x^3}} \ implies I &= dfrac{2x}{sqrt{1 + x^3}}end{align}$$
Answered by an4s on August 5, 2020
@ClaudeLeibovici has a point, because what you did is a well-worn technique, that of using an Ansatz. The basic idea is to make an educated guess as to the form of the solution, then make it more specific with your calculations, as you did. So it's worth understanding what makes a specific Ansatz a sensible starting point:
Maybe this answer isn't what you were looking for, but it's important to understand how to use an Ansatz as more than an accident.
Answered by J.G. on August 5, 2020
1 Asked on November 26, 2021 by nikos-m
2 Asked on November 26, 2021 by kristen-m-day
3 Asked on November 26, 2021
1 Asked on November 26, 2021
1 Asked on November 26, 2021
2 Asked on November 26, 2021
1 Asked on November 26, 2021 by sebastien-b
definite integrals fourier transform multiple integral multivariable calculus
0 Asked on November 26, 2021 by nikowielopolski
2 Asked on November 26, 2021 by seo
1 Asked on November 26, 2021 by jd_pm
1 Asked on November 26, 2021
1 Asked on November 26, 2021 by danilo-gregorin-afonso
calculus of variations inequality partial differential equations regularity theory of pdes
1 Asked on November 26, 2021 by atw
1 Asked on November 26, 2021 by aatish-five
combinatorics discrete mathematics recurrence relations recursion
1 Asked on November 24, 2021
convergence divergence fake proofs nested radicals radicals solution verification
2 Asked on November 24, 2021
Get help from others!
Recent Answers
Recent Questions
© 2023 AnswerBun.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP