TransWikia.com

Evaluating $sumlimits_{i=lceil frac{n}{2}rceil}^inftybinom{2i}{n}frac{1}{2^i}$

Mathematics Asked by Maxim Enis on December 1, 2021

Let $a_n = sumlimits_{i=lceil frac{n}{2}rceil}^inftybinom{2i}{n}frac{1}{2^i}$. Prove that $a_{n+1} = 2a_n + a_{n-1}$.

I have tried considering the derivatives of $frac{1}{1-x^2}=1+x^2+x^4+…$, and although this may work, it certainly does not seem like it would be the best way to go about solving this problem.

One Answer

First, as Steven Stadnicki's question comment states, you can also get the same result as what you're asking for by starting "from $i = 0$" because "$binom{a}{b} = 0$ when $a lt b$" (note $binom{a}{b}$ means the number of ways to choose $b$ items from among $a$ items, but there are $0$ ways to do this if $b gt a$).

Next, for positive natural numbers $n$ and $k$, Pascal's rule states

$$binom{n}{k} = binom{n - 1}{k} + binom{n - 1}{k - 1} tag{1}label{eq1A}$$

With positive natural numbers $i$ and $n$, this gives

$$binom{2i}{n + 1} = binom{2i - 1}{n + 1} + binom{2i - 1}{n} tag{2}label{eq2A}$$

Using eqref{eq1A} on both terms of the RHS of eqref{eq2A} gives

$$binom{2i - 1}{n + 1} = binom{2i - 2}{n + 1} + binom{2i - 2}{n} tag{3}label{eq3A}$$

$$binom{2i - 1}{n} = binom{2i - 2}{n} + binom{2i - 2}{n - 1} tag{4}label{eq4A}$$

Substituting these into eqref{eq2A}, multiplying both sides by $frac{1}{2^{i}}$, summing from $i = 1$ to $infty$, changing the summation indices on the RHS and making a few algebraic manipulations, you end up with

$$begin{equation}begin{aligned} binom{2i}{n + 1} & = binom{2i - 2}{n + 1} + 2binom{2i - 2}{n} + binom{2i - 2}{n - 1} \ binom{2i}{n + 1}frac{1}{2^i} & = frac{1}{2}binom{2i - 2}{n + 1}frac{1}{2^{i-1}} + binom{2i - 2}{n}frac{1}{2^{i-1}} + frac{1}{2}binom{2i - 2}{n - 1}frac{1}{2^{i-1}} \ sum_{i=1}^{infty}binom{2i}{n + 1}frac{1}{2^i} & = frac{1}{2}sum_{i=1}^{infty}binom{2(i - 1)}{n + 1}frac{1}{2^{i-1}} + sum_{i=1}^{infty}binom{2(i - 1)}{n}frac{1}{2^{i-1}} + frac{1}{2}sum_{i=1}^{infty}binom{2(i - 1)}{n - 1}frac{1}{2^{i-1}} \ a_{n+1} & = frac{1}{2}sum_{i=0}^{infty}binom{2i}{n + 1}frac{1}{2^{i}} + sum_{i=0}^{infty}binom{2i}{n}frac{1}{2^{i}} + frac{1}{2}sum_{i=0}^{infty}binom{2i}{n - 1}frac{1}{2^{i}} \ a_{n+1} & = left(frac{1}{2}right)a_{n+1} + a_{n} + left(frac{1}{2}right)a_{n-1} \ left(frac{1}{2}right)a_{n+1} & = a_{n} + left(frac{1}{2}right)a_{n-1} \ a_{n+1} & = 2a_n + a_{n-1} end{aligned}end{equation}$$

Answered by John Omielan on December 1, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP