TransWikia.com

Evaluating the integral $int^{infty}_{-infty} frac{dx}{x^4-2cos(2theta)x^2 +1}$

Mathematics Asked by user793781 on November 12, 2021

The first part of this question required me to find out the zeroes of the denominator, and to treat the equation as that of a complex number, which allows us to write:
$$frac{1}{z^4-2cos(2theta)z^2 +1}=frac{1}{(z-e^{itheta})(z+e^{itheta})(z-e^{-itheta})(z+e^{-itheta})}$$
As far as I can understand these zeros have the effect of giving a circle of singularities in the complex plane with radius 1.

I assume to do the integral given in the question, I would have to do some kind of contour integration over the complex plane, but I am stumped as to which contour I should use to do this. I assume a branch cut will also be needed due to the transcendental nature of the zeroes in the denominator.

As always and help is appreciated – thanks!

2 Answers

$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},} newcommand{braces}[1]{leftlbrace,{#1},rightrbrace} newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack} newcommand{dd}{mathrm{d}} newcommand{ds}[1]{displaystyle{#1}} newcommand{expo}[1]{,mathrm{e}^{#1},} newcommand{ic}{mathrm{i}} newcommand{mc}[1]{mathcal{#1}} newcommand{mrm}[1]{mathrm{#1}} newcommand{pars}[1]{left(,{#1},right)} newcommand{partiald}[3][]{frac{partial^{#1} #2}{partial #3^{#1}}} newcommand{root}[2][]{,sqrt[#1]{,{#2},},} newcommand{totald}[3][]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}} newcommand{verts}[1]{leftvert,{#1},rightvert}$ $ds{underline{underline{mbox{With} theta notin pimathbb{Z}}}}$: begin{align} &bbox[10px,#ffe]{int_{-infty}^{infty} {dd x over x^{4} - 2cospars{2theta}x^{2} + 1}} = 2int_{0}^{infty} {x^{-2},dd x over x^{2} - 2cospars{2theta} + x^{-2}} \[5mm] = & 2int_{0}^{infty} {x^{-2},dd x over pars{x - x^{-1}}^{2} + 2bracks{1 -cospars{2theta}}} \[5mm] = & int_{0}^{infty} {x^{-2},dd x over pars{x - x^{-1}}^{2} + 4sin^{2}pars{theta}} + int_{infty}^{0} {-,dd x over pars{x^{-1} - x}^{2} + 4sin^{2}pars{theta}} \[5mm] = & int_{0}^{infty} {pars{1 + x^{-2}},dd x over pars{x - x^{-1}}^{2} + 4sin^{2}pars{theta}} = int_{-infty}^{infty} {dd x over x^{2} + 4sin^{2}pars{theta}} \[5mm] = & {1 over 4sin^{2}pars{theta}}, 2verts{sinpars{theta}}int_{-infty}^{infty} {dd x/bracks{2verts{sinpars{theta}}} over braces{x/bracks{2verts{sinpars{theta}}}}^{2} + 1} \[5mm] = & {1 over 2verts{sinpars{theta}}}int_{-infty}^{infty} {dd x over x^{2} + 1} = bbx{pi over 2verts{sinpars{theta}}},,qquad theta notin pimathbb{Z} end{align}

Answered by Felix Marin on November 12, 2021

For the contour, you can simply choose a semi-circle of radius $R>1$in the upper half plane, as usual oriented counter-clockwise. I don't think you need to consider any branch cuts. You'll have two singularities in your contour, one at $z=e^{itheta}$, and the other at $z=-e^{-itheta}$. The integral over the semi-circle will vanish as $Rtoinfty$. The sum of your residues is $$frac{1}{2e^{itheta}}frac{1}{2isintheta}frac{1}{2costheta}+frac{1}{-2e^{-itheta}}frac{1}{-2isintheta}frac{1}{2costheta} = frac{1}{4isintheta}.$$ Hence, multiplying by $i2pi $, $$int_{-infty}^infty frac{dx}{x^4 - 2 cos(2theta)x^2+1}= frac{pi}{2sintheta}.$$

Answered by Zachary on November 12, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP