# If $int_0^{10} g(x),dx = 8$, what is $int_0^{10} [g(x)+2],dx$?

Mathematics Asked by Ayanoria on January 3, 2022

Consider the function $$g$$ that is continuous on the interval $$[−10, 10]$$ and that $$int_0^{10}g(x)dx=8$$. What is $$int_0^{10}[g(x)+2]dx$$ equal to?

So I tried just substituting the first function to get $$8+2$$ to equal $$10$$, but that’s wrong. I really don’t know how to proceed from here.

## Related Questions

### Discussion of continuous functions in topology

2  Asked on December 1, 2021

### Is there a specific name for this geometrical shape?

1  Asked on December 1, 2021

### Are regular/Riemann integrals a special case of a line integral?

2  Asked on December 1, 2021 by pendronator

### Injection from $(Kotimes_{mathbb{Z}}hat{mathbb{Z}})^*to prod_p(Kotimes_{mathbb{Z}}mathbb{Z}_p)^*$?

1  Asked on December 1, 2021

### Classification of triply transitive finite groups

1  Asked on December 1, 2021 by jack-schmidt

### Lebesgue Measure Space and a converging, increasing sequence. Show that the sequence in increasing.

1  Asked on December 1, 2021 by martinhynesone

### What is the derivative of $log det X$ when $X$ is symmetric?

3  Asked on December 1, 2021 by evangelos

### Uncertainty of a Weighted Mean with Uncertain Weights

1  Asked on December 1, 2021 by alex-howard

### The Grothendieck-Serre Correspondence : Obstructions to the construction of the cyclic group of order 8 as a Galois group?

1  Asked on December 1, 2021

### Prove/disprove that $mathbb{R}^2 /$~ is hausdorff, when: $(x_1,x_2)$~$(y_1,y_2)$ if there is $t>0$ such that $x_2 = tx_1$ and $ty_2 = y_1$

1  Asked on December 1, 2021 by gabi-g

### Definition of ring of dual numbers

1  Asked on December 1, 2021 by ponchan

### Are chain complexes chain equivalent to free ones?

1  Asked on December 1, 2021

### all prime numbers except 2 can write in the form $4npm1$

4  Asked on December 1, 2021 by aligator

### Time Average Mean of X(t)=A, where A is a r.v. Ergodic vs. non-ergodic.

1  Asked on December 1, 2021

### The complexity of finiteness

1  Asked on December 1, 2021

### Question about step in Ahlfors’ proof of Cauchy’s inequality in complex analysis.

1  Asked on December 1, 2021

### Numerical differentation – finding maxima

0  Asked on December 1, 2021

### Neyman–Pearson Lemma

1  Asked on December 1, 2021 by noe-vidales

### Is the determinant a tensor?

1  Asked on December 1, 2021