TransWikia.com

Inverse of a 3x3 block matrix

Mathematics Asked by Dadoo on January 7, 2021

I would like to get the inverse of a 3×3 (covariance) block matrix

begin{bmatrix}A&B&C\B’&D&E\C’&E’&Fend{bmatrix}

where the prime ‘ indicates the transposition operator.

Is there any general formula (or a way to solve this problem)?

Thank you very much.

One Answer

As user3556214 points out, one can apply the formula for inverting a 2×2 block matrix repeatedly, but it does not lead to nice results.

Recall the formula for the inverse of a 2×2 block matrix:

$$ begin{aligned} begin{bmatrix} A&B\ C&D end{bmatrix}^{-1} &= begin{bmatrix} A^{-1}+A^{-1}BS^{-1}CA^{-1}&-A^{-1}BS^{-1}\ -S^{-1}CA^{-1}&S^{-1} end{bmatrix} \ S &= D - C A^{-1} B end{aligned} $$

Now consider a 3×3 block matrix

$$ begin{aligned} X &= begin{bmatrix} E&F&G\ H&J&K\ L&M&N end{bmatrix} end{aligned} $$

Apply the 2×2 block inverse formula, plugging in: $tilde A=E$, $tilde B=begin{bmatrix}F&Gend{bmatrix}$, $tilde C=begin{bmatrix}H\Lend{bmatrix}$, and $tilde D=begin{bmatrix}J&K\M&Nend{bmatrix}$:

$$ begin{aligned} X^{-1} &= begin{bmatrix} E&begin{bmatrix}F&Gend{bmatrix}\ begin{bmatrix}H\Lend{bmatrix}&begin{bmatrix}J&K\M&Nend{bmatrix} end{bmatrix}^{-1} \&= begin{bmatrix} E^{-1}+E^{-1}begin{bmatrix}F&Gend{bmatrix}Z^{-1}begin{bmatrix}H\Lend{bmatrix}E^{-1}&-E^{-1}begin{bmatrix}F&Gend{bmatrix}Z^{-1}\ -Z^{-1}begin{bmatrix}H\Lend{bmatrix}E^{-1}&Z^{-1} end{bmatrix} \ Z &= begin{bmatrix}J&K\M&Nend{bmatrix} - begin{bmatrix}H\Lend{bmatrix} E^{-1} begin{bmatrix}F&Gend{bmatrix} end{aligned} $$

The factor $Z$, in turn, is another 2×2 block matrix.

$$ begin{aligned} Z &= begin{bmatrix}J&K\M&Nend{bmatrix} - begin{bmatrix}H\Lend{bmatrix} E^{-1} begin{bmatrix}F&Gend{bmatrix} \ &= begin{bmatrix}J&K\M&Nend{bmatrix} - begin{bmatrix} HE^{-1}F & HE^{-1}G \ LE^{-1}F & LE^{-1}G end{bmatrix} \ &= begin{bmatrix} J-HE^{-1}F & K-HE^{-1}G \ M-LE^{-1}F & N-LE^{-1}G end{bmatrix} end{aligned} $$

Again apply again the 2×2 block inverse formula to get $Z^{-1}$, defining:

$$ begin{aligned} A &= J-HE^{-1}F \ B &= K-HE^{-1}G \ C &= M-LE^{-1}F \ D &= N-LE^{-1}G end{aligned} $$

$$ begin{aligned} Z^{-1} &= begin{bmatrix} A&B\ C&D end{bmatrix}^{-1} = begin{bmatrix} A^{-1}+A^{-1}BS^{-1}CA^{-1}&-A^{-1}BS^{-1}\ -S^{-1}CA^{-1}&S^{-1} end{bmatrix} \ S &= D - C A^{-1} B end{aligned} $$

Further expanding the forumula for $X^{-1}$ in terms of this is tedious and somewhat unsatisfying. Define

$$ begin{aligned} U &= G - FA^{-1}B \ V &= L-CA^{-1}H end{aligned} $$

then expand and simplify:

$$ begin{aligned} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% E^{-1}&+E^{-1}begin{bmatrix}F&Gend{bmatrix}Z^{-1}begin{bmatrix}H\Lend{bmatrix}E^{-1} \&= E^{-1}left{I+ begin{bmatrix}F&Gend{bmatrix} begin{bmatrix}A^{-1}+A^{-1}BS^{-1}CA^{-1}&-A^{-1}BS^{-1}\-S^{-1}CA^{-1}&S^{-1}end{bmatrix} begin{bmatrix}H\Lend{bmatrix}E^{-1} right} \&= E^{-1}left{I+ begin{bmatrix}F&Gend{bmatrix} begin{bmatrix}[A^{-1}+A^{-1}BS^{-1}CA^{-1}]H-A^{-1}BS^{-1}L\-S^{-1}CA^{-1}H + S^{-1}Lend{bmatrix} E^{-1} right} \&= E^{-1}left{I +left{ Fleft[(A^{-1}+A^{-1}BS^{-1}CA^{-1})H-A^{-1}BS^{-1}Lright] +Gleft[-S^{-1}CA^{-1}H + S^{-1}Lright] right}E^{-1} right} \&= E^{-1}left{I + left{ FA^{-1}left[H+BS^{-1}(CA^{-1}H-L)right] -GS^{-1}[CA^{-1}H-L] right} E^{-1} right} \&= E^{-1}left{I+left{FA^{-1}H+left[FA^{-1}B-Gright]S^{-1}[CA^{-1}H-L]right}E^{-1}right} \&= E^{-1}+E^{-1}left{FA^{-1}H+US^{-1}Vright}E^{-1} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \ \ -&E^{-1}begin{bmatrix}F&Gend{bmatrix}Z^{-1} \&= -E^{-1} begin{bmatrix}F&Gend{bmatrix} begin{bmatrix}A^{-1}+A^{-1}BS^{-1}CA^{-1}&-A^{-1}BS^{-1}\-S^{-1}CA^{-1}&S^{-1}end{bmatrix} \&= -E^{-1}begin{bmatrix} FA^{-1}+FA^{-1}BS^{-1}CA^{-1}-GS^{-1}CA^{-1} & -FA^{-1}BS^{-1}+GS^{-1} end{bmatrix} \&= begin{bmatrix} -E^{-1}left{ F+(FA^{-1}B-G)S^{-1}C right} A^{-1} & E^{-1}[FA^{-1}B-G]S^{-1} end{bmatrix} \&= begin{bmatrix} -E^{-1}left[ F-US^{-1}C right] A^{-1} & -E^{-1}US^{-1} end{bmatrix} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \ \ -&Z^{-1}begin{bmatrix}H\Lend{bmatrix}E^{-1} \&=-begin{bmatrix}A^{-1}+A^{-1}BS^{-1}CA^{-1}&-A^{-1}BS^{-1}\-S^{-1}CA^{-1}&S^{-1}end{bmatrix} begin{bmatrix}H\Lend{bmatrix}E^{-1} \&= begin{bmatrix} -A^{-1}H-A^{-1}BS^{-1}CA^{-1}H + A^{-1}BS^{-1}L \ S^{-1}CA^{-1}H -S^{-1}L end{bmatrix}E^{-1} \&= begin{bmatrix} -A^{-1}[H+BS^{-1}(CA^{-1}H-L)]E^{-1} \ S^{-1}(CA^{-1}H-L)E^{-1} end{bmatrix} \&= begin{bmatrix} -A^{-1}[H-BS^{-1}V]E^{-1} \ -S^{-1}VE^{-1} end{bmatrix} end{aligned} $$

This gives the expanded formula:

$$ begin{aligned} &X^{-1}= \& begin{bmatrix} E^{-1}+E^{-1}left[FA^{-1}H+US^{-1}Vright]E^{-1} & -E^{-1}left[F-US^{-1}Cright]A^{-1} & -E^{-1}US^{-1} \ -A^{-1}[H-BS^{-1}V]E^{-1} & A^{-1}+A^{-1}BS^{-1}CA^{-1} & -A^{-1}BS^{-1} \ -S^{-1}VE^{-1} & -S^{-1}CA^{-1} & S^{-1} end{bmatrix} end{aligned} $$

Correct answer by MRule on January 7, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP