Mathematics Asked on January 1, 2022

For probability triple $(mathbb{R}, mathcal{B}(mathbb{R}), mu)$ prove that for a random variable $X$, if $mu(X>0)>0$, there must be $alpha>0$ s.t. $mu(X>alpha)>0$.

So if $X$ is a random variable with that property, it means that $exists $ event $ A in mathcal{F}$ and interval $B=(0, infty)$ s.t.

$$

A:{omega in mathbb{R}: X^{-1}(B)= A }, mu(A)=m>0

$$

Since $A$ is an interval, we can set its upper and lower bounds as $beta_1, beta_2$. Since $A in mathcal {F}$, we can certainly find number $alpha^{-1}$ such that there exist two disjoint intervals $A_1 cup A_2=A$ with the same measure:

$$

A=A_1 cup A_2, A_1 = [beta_1, alpha^{-1}], A_2 = [alpha^{-1}, beta_2], mu(A_1)=mu(A_2)=frac{m}{2}

$$

Obvisouly $alpha^{-1} in A$, and, since $A$ is a preimage of $B, alpha^{-1} = X^{-1}({alpha})$, and $alpha in B$. Therefore

$$

A_2 = {omega:X^{-1}(alpha, infty)}

$$

and $mu(X>alpha) = mu(A_2)=frac{m}{2}>0$.

I think this is correct, but the hint for the problem is to use the continuity of probabilities, which I didn’t.

The set $E_n={X>frac1n}$ increases to $E={X>0}$. By monotone convergence $0<mu(E)=lim_nmu(E_n)=sup_nmu(E_n)$

From this, it follows that $mu(E_n)>0$ for all sufficiently large $n$.

Answered by Jean L. on January 1, 2022

Consider the expanding sequence of sets $A_n = { X > frac{1}{k}}$. Notice $ bigcup_{k=1}^infty { X > frac{1}{k}} = {X > 0}$. Since $A_n$ is an expanding sequence of sets, then by the Monotone Convergence Theorem for sets $$lim_{ntoinfty} mu(A_n) = muBig(bigcup_{k=1}^infty A_kBig) = mu({X > 0}) > 0$$ We then get that $$0 < muBig(bigcup_{k=1}^infty A_kBig)leq sum_{k=1}^infty mu(A_k)$$ Since the series $sum mu(A_k) > 0$ and each term is nonnegative, then at least one term must be positive, for otherwise $sum mu(A_k) = 0$.

Answered by Andrew Shedlock on January 1, 2022

1 Asked on December 21, 2021 by mark-viola

euler mascheroni constant improper integrals real analysis special functions

2 Asked on December 21, 2021

algebraic geometry calculus convergence divergence integration

2 Asked on December 21, 2021

coprime elementary number theory number theory pythagorean triples

1 Asked on December 21, 2021 by fdp

2 Asked on December 21, 2021

1 Asked on December 21, 2021 by user521337

cohen macaulay commutative algebra gorenstein homological algebra local cohomology

1 Asked on December 21, 2021 by yoshimi-saito

3 Asked on December 21, 2021

3 Asked on December 21, 2021

0 Asked on December 21, 2021 by tio-miserias

algebraic geometry optimization polynomials real algebraic geometry sum of squares method

1 Asked on December 21, 2021

0 Asked on December 21, 2021 by chris-kuo

algebraic topology category theory homological algebra sheaf theory

1 Asked on December 21, 2021

eigenvalues eigenvectors linear algebra matrices numerical linear algebra spectral radius

1 Asked on December 21, 2021 by james-eade

0 Asked on December 21, 2021

2 Asked on December 21, 2021 by user792898

Get help from others!

Recent Answers

- Peter Machado on Why fry rice before boiling?
- Lex on Does Google Analytics track 404 page responses as valid page views?
- Jon Church on Why fry rice before boiling?
- haakon.io on Why fry rice before boiling?
- Joshua Engel on Why fry rice before boiling?

Recent Questions

- How Do I Get The Ifruit App Off Of Gta 5 / Grand Theft Auto 5
- Iv’e designed a space elevator using a series of lasers. do you know anybody i could submit the designs too that could manufacture the concept and put it to use
- Need help finding a book. Female OP protagonist, magic
- Why is the WWF pending games (“Your turn”) area replaced w/ a column of “Bonus & Reward”gift boxes?
- Does Google Analytics track 404 page responses as valid page views?

© 2023 AnswerBun.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP