Prove that exist $b gt 0$, so that $f$ may be defined at $x=0$ and be continuous.

Mathematics Asked by Karl on August 25, 2020

Given the function $$
f(x) =
(1 + 2^{frac{3}{x}})^{bsin(x)} &quad if quad xgt 0 \
frac{arctan(9bx)}{x} &quad if quad xlt 0 \

Prove that exist $b gt 0$, so that $f$ may be defined at $x=0$ and be continuous.

My procedure:

(1) $$lim_{xto 0} frac{arctan(9bx)}{x} = lim_{xto 0} frac{arctan(9bx)-arctan(9b*0)}{x} = frac d{dx}arctan(9bx)|_{x=0}=Bigl(frac{1}{1+(9bx)^2}9bBigr)|_{x=0}=9b=lim_{xto 0^{+}} frac{arctan(9bx)}{x}=lim_{xto 0^{-}} frac{arctan(9bx)}{x}$$

Then the limit $lim_{xto 0^{-}} frac{arctan(9bx)}{x}$ exist.

(2) $$lim_{xto 0^{+}} (1 + 2^{frac{3}{x}})^{bsin(x)} = infty^0 ;(indetermination)$$
The thing is I don´t really know how to calculate the second limit. Any hint in how to proceed with the limit?. Preferably without using L’Hopitals rule.

One Answer

The problem is to compute the right-side limit. Assume henceforth $x>0$. $$log(1+2^{3/x})^{bsin x}=bsin xlog(1+2^{3/x})=bsin xlog(2^{3/x}(1+2^{-3/x}))=bsin xfrac{3}{x}log 2+o(x)$$ So the logarithm of the expression tends, as $xdownarrow 0$, to $3blog 2$.

Correct answer by uniquesolution on August 25, 2020

Add your own answers!

Related Questions

How to evaluate Euler-type integral

1  Asked on November 9, 2021


Why is MA not provable from ZFC?

1  Asked on November 6, 2021 by grinsekotze


To find supremum of this

4  Asked on November 6, 2021 by jessica-griffin


Find a sum of fractional series

1  Asked on November 6, 2021 by manabou11


Ask a Question

Get help from others!

© 2023 All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP