TransWikia.com

Real Analysis Methodologies to Prove $-int_x^infty frac{cos(t)}{t},dt=gamma+log(x)+int_0^x frac{cos(t)-1}{t},dt$ for $x>0$

Mathematics Asked by Mark Viola on December 21, 2021

MOTIVATION:

In this question, the OP asked to prove the Cosine Integral identity

$$-int_x^infty frac{cos(t)}{t},dt=gamma+log(x)+int_0^x frac{cos(t)-1}{t},dt$$

where $gamma $ is the Euler-Mascheroni constant. However, the two posted answers are incomplete and seem unsatisfactory.


Proof Using Complex Anaysis

One can show for $x>0$ that $-int_x^infty frac{cos(t)}{t},dt=gamma+log(x)+int_0^x frac{cos(t)-1}{t},dt$ using contour integration. To wit, Cauchy’s Integral Theorem guarantees that

$$begin{align}
0&=oint_C frac{e^{iz}}{z},dz\\
&=int_epsilon^R frac{e^{ix}}{x},dx +int_0^{pi/2}frac{e^{iRe^{iphi}}}{Re^{iphi}},iRe^{iphi},dphi+int_R^epsilon frac{e^{-x}}{ix},i,dx+int_{pi/2}^0 frac{e^{iepsilon e^{iphi}}}{epsilon e^{iphi}},iepsilon e^{iphi},dphi\\
&=int_epsilon^R frac{e^{ix}}{x},dx -int_epsilon^R frac{e^{-x}}{x},dx-ifracpi2+O(epsilon)+Oleft(frac1Rright)tag1
end{align}$$

whence after taking the real part of both sides of $(1$ and integrating by parts the integral $int_epsilon^R frac{e^{-x}}{x},dx$ with $u=e^{-x}$ and $v=log(x)$, we find

$$begin{align}-int_x^R frac{cos(x’)}{x’},dx’&=log(x)-int_epsilon^R e^{-x}log(x),dx+int_epsilon^xfrac{cos(x’)-1}{x’},dx’\\
&-log(epsilon) -e^{-R}log(R)+e^{-epsilon}log(epsilon)+Oleft(frac1Rright)+O(epsilon)tag2
end{align}$$

Letting $Rtoinfty$ and $epsilonto 0$ in $(2)$ yields the sought relationship.


Proof Using Real Analysis

Alternatively, we can use either the Laplace Transform or "Feynman’s Trick" to show that

$$int_0^infty frac{cos(x)-e^{-x}}{x},dx=int_0^infty left(frac{x}{x^2+1}-frac1{x+1}right)=0tag3$$

Starting with $(3)$, is tantamount to starting with the real part of $(1)$ and we are done.


QUESTION: So, what are other ways to prove the coveted relationship using real analysis tools only?

One Answer

Note that for each $x>0$, the improper integral $int_{x}^{infty}frac{cos(t)}{t}dt$ converges conditionally (in the sense that $lim_{Arightarrowinfty}int_{x}^{A}frac{cos(t)}{t}dt$ exists but $lim_{Arightarrowinfty}int_{x}^{A}left|frac{cos(t)}{t}right|dt=infty$). Define $F:(0,infty)rightarrowmathbb{R}$ by $F(x)=int_{x}^{infty}frac{cos(t)}{t}dt$. Note that we still have $F'(x)=-frac{cos(x)}{x}$. For, begin{eqnarray*} F'(x) & = & lim_{hrightarrow0}frac{int_{x+h}^{infty}frac{cos(t)}{t}dt-int_{x}^{infty}frac{cos(t)}{t}dt}{h}\ & = & -lim_{hrightarrow0}frac{int_{x}^{x+h}frac{cos(t)}{t}dt}{h}\ & = & -frac{cos(x)}{x}. end{eqnarray*}

On the other hand, $0$ in the integral $int_{0}^{x}frac{cos(t)-1}{t}dt$ is a removable singularity. For $tneq0$, we have begin{eqnarray*} frac{cos(t)-1}{t} & = & frac{(1-frac{1}{2!}t^{2}+frac{1}{4!}t^{4}-cdots)-1}{t}\ & = & -frac{1}{2!}t+frac{1}{4!}t^{3}-frac{1}{6!}t^{5}+cdots. end{eqnarray*} Define $phi:mathbb{R}rightarrowmathbb{R}$ by $phi(t)=-frac{1}{2!}t+frac{1}{4!}t^{3}-frac{1}{6!}t^{5}+cdots$. It can be proved that the power series converges everywhere (using root-test), and hence $phi$ is an analytic function. Therefore $int_{0}^{x}frac{cos(t)-1}{t}dt=int_{0}^{x}phi(t)dt$.

Now $frac{d}{dx}int_{0}^{x}frac{cos(t)-1}{t}dt=frac{cos(x)-1}{x}$.

Finally, define $G:(0,infty)rightarrowmathbb{R}$ by $$ G(x)=int_{x}^{infty}frac{cos(t)}{t}dt-left[ln(x)+int_{0}^{x}frac{cos(t)-1}{t}dtright]. $$ Then $G$ is differentiable and $G'(x)=-frac{cos(x)}{x}-frac{1}{x}-frac{cos(x)-1}{x}=0$. This shows that $G$ is a constant function.

Answered by Danny Pak-Keung Chan on December 21, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP