# Solving the Fractional Fourier Integral Transform of $e^{j omega_{0} t}$

Mathematics Asked by The Dude on December 15, 2020

I want to solve the integral:

begin{align} F_{alpha}(omega) = frac{1}{sqrt{2 pi}} cdot sqrt{1 – j text{cot}(alpha)} cdot e^{j frac{1}{2} text{cot}(alpha) omega^{2} } int_{-infty}^{infty} e^{-j text{csc}(alpha) omega t + j frac{1}{2} text{cot}(alpha)t^{2} } e^{ j omega_{0} t} dt end{align}

where $$j$$ is the imaginary number. The problem is, the integral I get is not the answer I am expecting.

Worked Solution:

Combining the exponents gives us:
begin{align} F_{alpha}(omega) = frac{1}{sqrt{2 pi}} cdot sqrt{1 – j text{cot}(alpha)} cdot e^{j frac{1}{2} text{cot}(alpha) omega^{2} } int_{-infty}^{infty} e^{- frac{1}{2} left[ -j text{cot}(alpha)t^{2} + 2j( omegatext{csc}(alpha) – omega_{0} ) t right]} dt end{align}
Completing the square gives us:
begin{align} F_{alpha}(omega) &= frac{1}{sqrt{2 pi}} cdot sqrt{1 – j text{cot}(alpha)} cdot e^{j frac{1}{2} text{cot}(alpha) omega^{2} } int_{-infty}^{infty} e^{-frac{1}{2} left[ -jtext{cot}(alpha) left( t + frac{omega_{0} – omega text{csc}(alpha)}{text{cot}(alpha)} right)^{2} + j frac{left( omega text{csc}(alpha) – omega_{0} right)^{2}}{text{cot}(alpha)} right] } dt \ F_{alpha}(omega) &= frac{1}{sqrt{2 pi}} cdot sqrt{1 – j text{cot}(alpha)} cdot e^{j frac{1}{2} text{cot}(alpha) omega^{2} } e^{-j frac{1}{2} frac{left( omega text{csc}(alpha) – omega_{0} right)^{2}}{text{cot}(alpha)}} int_{-infty}^{infty} e^{-frac{1}{2} left[ -jtext{cot}(alpha) left( t + frac{omega_{0} – omega text{csc}(alpha)}{text{cot}(alpha)} right)^{2} right] } dt end{align}
Now we let $$z = t + frac{omega_{0} – omega text{csc}(alpha)}{text{cot}(alpha)}$$, which means $$dz = dt$$, and the bounds don’t change. This means we have:
begin{align} F_{alpha}(omega) &= frac{1}{sqrt{2 pi}} cdot sqrt{1 – j text{cot}(alpha)} cdot e^{j frac{1}{2} text{cot}(alpha) omega^{2} } e^{-j frac{1}{2} frac{left( omega text{csc}(alpha) – omega_{0} right)^{2}}{text{cot}(alpha)}} int_{-infty}^{infty} e^{j frac{1}{2} text{cot}(alpha) z^{2} } dz end{align}
Well this is just a Gaussian integral, so we have:
begin{align} F_{alpha}(omega) &= frac{1}{sqrt{2 pi}} cdot sqrt{1 – j text{cot}(alpha)} cdot e^{j frac{1}{2} text{cot}(alpha) omega^{2} } e^{-j frac{1}{2} frac{left( omega text{csc}(alpha) – omega_{0} right)^{2}}{text{cot}(alpha)}} sqrt{frac{2 pi}{-j text{cot}(alpha)}} \ F_{alpha}(omega) &= sqrt{ frac{ 1 – j text{cot}(alpha)}{-j text{cot}(alpha)} } cdot e^{j frac{1}{2} text{cot}(alpha) omega^{2} } e^{-j frac{1}{2} frac{left( omega text{csc}(alpha) – omega_{0} right)^{2}}{text{cot}(alpha)}} end{align}
Now we will work on simplifiying this expression. We start with the radical:
begin{align} F_{alpha}(omega) &= sqrt{ 1 + j text{tan}(alpha) } cdot e^{j frac{1}{2} text{cot}(alpha) omega^{2} } e^{-j frac{1}{2} frac{left( omega text{csc}(alpha) – omega_{0} right)^{2}}{text{cot}(alpha)}} end{align}
Now we combine the exponentials:
begin{align} F_{alpha}(omega) &= sqrt{ 1 + j text{tan}(alpha) } cdot e^{j frac{1}{2} left[ text{cot}(alpha) omega^{2} – frac{left( omega text{csc}(alpha) – omega_{0} right)^{2}}{text{cot}(alpha)} right]} end{align}
Now lets expand the exponent:
begin{align} text{cot}(alpha) omega^{2} – frac{left( omega text{csc}(alpha) – omega_{0} right)^{2}}{text{cot}(alpha)} & = text{cot}(alpha) omega^{2} – frac{1}{text{cot}(alpha)} cdot left( omega^{2} text{csc}^{2}(alpha) – 2 omega_{0} omega text{csc}(alpha) + omega_{0}^{2} right)\ &= frac{text{cot}^{2}(alpha) – text{csc}^{2}(alpha)}{text{cot}(alpha)} omega^{2} + 2 frac{text{csc}(alpha)}{text{cot}(alpha)} omega_{0} omega – frac{1}{text{cot}(alpha)} omega_{0}^{2} end{align}
Since $$text{cot}(alpha) = frac{1}{text{tan}(alpha)} = frac{text{cos}(alpha)}{text{sin}(alpha)}$$, and $$text{csc}(alpha) = frac{1}{text{sin}(alpha)}$$, we have:
begin{align} &= left( text{cot}(alpha) – text{tan}(alpha) right) omega^{2} + 2 text{sec}(alpha) omega_{0} omega – text{tan}(alpha) omega_{0}^{2} \ &= -(omega^{2} + omega_{0}^{2}) text{tan}(alpha) + 2 text{sec}(alpha) omega_{0} omega + text{cot}(alpha) omega^{2} \ end{align}
So we have:
begin{align} boxed{ F_{alpha}(omega) = sqrt{ 1 + j text{tan}(alpha) } cdot e^{jfrac{1}{2} text{cot}(alpha) omega^{2}} e^{-j frac{1}{2} (omega^{2} + omega_{0}^{2}) text{tan}(alpha) + j text{sec}(alpha) omega_{0} omega} } end{align}

The Problem:

According to the paper "The Fractional Fourier Transform and Time-Frequency Representations" by Luis B Almeida, the answer should be:

begin{align} boxed{ F_{alpha}(omega) = sqrt{ 1 + j text{tan}(alpha) } e^{-j frac{1}{2} (omega^{2} + omega_{0}^{2}) text{tan}(alpha) + j text{sec}(alpha) omega_{0} omega} } end{align}

In other words, my answer has an extra $$e^{-jfrac{1}{2} text{cot}(alpha) omega^{2}}$$ term.

Question:

What have I done wrong? Am I correct, or is the paper incorrect?

Edit 1: I have tried plugging it into Mathematica, but it is of no help, even after trying all the simplify commands.

(0.707107 E^((0. + 0.5 I) w^2 Cot[a] - (0. + 0.5 I) (1. v - 1. wCsc[a])^2 Tan[a]) Sqrt[1 - I Cot[a]])/Sqrt[(0. - 0.5 I) Cot[a]]


which is different from everyone’s….

Edit 2: Here is another twist in the saga.

In the paper, it says that Almeida’s result holds if $$alpha – frac{pi}{2} neq n cdot pi$$ where $$n in mathbb{Z}$$

However, when $$alpha = n cdot pi + frac{pi}{2} = frac{2n+1}{2} cdot pi$$, then $$text{cot}(alpha) = text{cot}left( frac{2n+1}{2} cdot pi right) = 0$$, so that extra complex exponential term is 1, which makes the my results agree with Almeida’s.

What in the world??

## Related Questions

### How to prove that $-|z| le Re (z) le |z|$ and $-|z| le Im (z) le |z|$?

2  Asked on November 12, 2021

### Does $g(v_n) longrightarrow g(0)$ for all $v_n text{s.t.} ||v_{n+1}|| leq ||v_n||$ imply $g$ continuos at $0$?

2  Asked on November 12, 2021 by a_student

### Your favorite way to think of $k[x_1,ldots,x_n]$ modulo some graded ideal?

0  Asked on November 12, 2021

### Why are the probability and mean number of edges between two nodes in a network equal for large networks?

1  Asked on November 12, 2021

### Geometric proof for the half angle tangent

3  Asked on November 12, 2021 by brazilian_student

### What are the relations between eigenvectors of $A$ and its adjoint $A^*$?

3  Asked on November 12, 2021 by user66906

### Skyscrapers sheaf’s global sections

2  Asked on November 12, 2021 by abramo

### Constructibility of the 17-gon

2  Asked on November 12, 2021

### Building palisade with Lego bricks

1  Asked on November 12, 2021

### Evaluating the integral $int^{infty}_{-infty} frac{dx}{x^4-2cos(2theta)x^2 +1}$

2  Asked on November 12, 2021 by user793781

### Ideals in a UFD

1  Asked on November 12, 2021

### The relationship between LCTVS and projective limit of a projective family of norm spaces.

1  Asked on November 12, 2021

### Matrix-vector multiplication/cross product problem

1  Asked on November 12, 2021 by kurt-muster

### Proving a self independent random variable can get only one value

1  Asked on November 12, 2021 by override

### Regular Expression describing language accepted by Finite State Automata

1  Asked on November 12, 2021 by awu

### Solving this DE

1  Asked on November 12, 2021

### Driven harmonic oscillator: Why does the phase of the driver have such a big impact on the solution?

1  Asked on November 12, 2021

### Bijection of a Generalised Cartesian Product

1  Asked on November 12, 2021

### Prove that $a ⊈ {a}$, where $a$ is non-empty

1  Asked on November 12, 2021 by galaxylokka

### Use linearisation of a certain function to approximate $sqrt{30}$

3  Asked on November 12, 2021

### Ask a Question

Get help from others!