AnswerBun.com

Study the convergence of the series $sum_{n ge 1} sin frac{1}{n^{5/4}}$.

I have to show whether the series

$$sum_{n ge 1}sin frac{1}{n^{5/4}}$$

is convergent or not.

This is what I tried, but I am not sure if it’s correct:

We know:

$$sin x le x, hspace{1cm} forall x ge 0$$

So then

$$hspace{6cm} sin frac{1}{n^{5/4}} le frac 1{n^{5/4}}, hspace{.5cm} forall n in mathbb{N} hspace{3cm}(1)$$

By the generalized harmonic series, we also know

$$hspace{7cm} sum_{n ge 1} frac{1}{n^{5/4}} hspace{.25cm} text{convergent} hspace{3cm} (2)$$

Now, using $(1)$ and $(2)$, we can conclude by the First Comparison Test that the series

$$sum_{n ge 1} sin frac{1}{n^{5/4}}$$

is convergent.

Is this correct?

Mathematics Asked by user592938 on December 31, 2020

1 Answers

One Answer

When you wrote that $displaystylesinleft(frac1{n^{5/4}}right)leqslant n^{5/4}$, what you should have written was that $displaystylesinleft(frac1{n^{5/4}}right)leqslantfrac1{n^{5/4}}$.

Besides, the comparison test is for series of non-negative numbers. So, you should add to your proof that$$(forall ninBbb N):frac1{n^{5/4}}inleft(0,fracpi2right)implies(forall ninBbb N):sinleft(frac1{n^{5/4}}right)>0.$$

Correct answer by José Carlos Santos on December 31, 2020

Add your own answers!

Related Questions

Are all complex functions onto?

4  Asked on January 5, 2022 by truth-seek

   

Are $mathbb{C}-mathbb{R}$ imaginary numbers?

2  Asked on January 5, 2022 by unreal-engine-5-coming-soon

 

What is the valus of this integral?

0  Asked on January 5, 2022 by bachamohamed

       

Ask a Question

Get help from others!

© 2022 AnswerBun.com. All rights reserved.