AnswerBun.com

Uniform convergence of $sum_{k=0}^{infty}(-1)^kfrac{[ln(1+x^2)]^k}{k!}$ on $mathbb{R}$.

Mathematics Asked on January 3, 2022

I would like to prove that the series of functions
$$
sum_{k=0}^{infty}(-1)^kfrac{[ln(1+x^2)]^k}{k!}
$$

does not converge uniformly on $mathbb{R}$. I proved that it does converge totally (and thus uniformly, and pointwise) on all the compact sets $[-M, M]$. The total convergence on the compact intervals $[-M,M]$ is quite straightforward since
$$
sum_{k=0}^infty sup_{xin[-M,M]}Big|(-1)^kfrac{[ln(1+x^2)]^k}{k!}Big|=sum_{k=0}^infty sup_{xin[-M,M]}frac{[ln(1+x^2)]^k}{k!}=sum_{k=0}^inftyfrac{[ln(1+M^2)]^k}{k!}<infty.
$$

I thought I could use a reductio ad absurdum argument to prove it does not converge uniformly on $mathbb{R}$, but I didn’t manage to make it work.

One Answer

For $sum_{k} f_k(x)$ to converge uniformly for all $x in mathbb{R}$ it is necessary that $|f_k(x)| to 0$ uniformly, and, equivalently, $sup_{x in mathbb{R}} |f_k(x)| to 0$ as $k to infty$.

In this case $sup_{x in mathbb{R}} |f_k(x)| = infty$.

Answered by RRL on January 3, 2022

Add your own answers!

Related Questions

How many anagrams with a specific subword?

2  Asked on February 24, 2021 by hhhiuw

 

continuous fraction for 30/pi^2

0  Asked on February 24, 2021 by vanessa

 

Why $G/C_G(a) leq G/zeta(G)$ in this lemma?

1  Asked on February 24, 2021 by m-ramana

 

How to prove $f(A^*) =f(A)^*$

1  Asked on February 24, 2021 by probafds123

     

About the notation of Axiom of Regularity

1  Asked on February 23, 2021 by lockedscope

   

Mean and Variance for Random Variables X>0

1  Asked on February 23, 2021 by mike-pinnsoneault

     

Show that $mathbb{Z}/5mathbb{Z} = langle arangle$

2  Asked on February 23, 2021 by user723228

 

Understanding Slope Better

2  Asked on February 22, 2021 by taylor-rendon

       

Ask a Question

Get help from others!

© 2023 AnswerBun.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP