AnswerBun.com

Are these two kernels isomorphic groups?

MathOverflow Asked by Francesco Polizzi on January 12, 2021

We have a finitely presented, infinite group $mathsf{B}$,
coming from a geometric topology problem (it is the quotient of a braid group for a genus 2 surface).

It is generated by elements
begin{equation}
{r_{11}, , t_{11}, , r_{12}, , t_{12}, , r_{21}, , t_{21}, ,
r_{22}, , t_{22}, , z },
end{equation}

subject to the following relations (here $[a, , b]=aba^{-1}b^{-1}$):
begin{equation*}
begin{aligned}
& z^2=1 \
& [r_{12}^{-1}, , t_{12}^{-1}] , t_{12}^{-1} ,
[r_{11}^{-1}, , t_{11}^{-1}] , t_{11}^{-1}, (t_{11} , t_{12}) =
z & \ & [r_{21}^{-1}, , t_{21}] ; t_{21} ;
[r_{22}^{-1}, , t_{22}] , t_{22}, (t_{22}^{-1} , t_{21}^{-1})=
z^{-1} \
& \
& [r_{11}, , r_{22}]=1 & &
[r_{12}, , r_{22}]=1 \
& [r_{11}, , r_{21}]=1 &
& [r_{12}, , r_{21}]=
z^{-1},r_{21},r_{22}^{-1},z,r_{22},r_{21}^{-1} \
& [r_{11}, , t_{22}]=1 & &
[r_{12}, , t_{22}]=z^{-1} \
& [r_{11}, , t_{21}]=z^{-1} & &
[r_{12}, , t_{21}]=[z^{-1}, , t_{21}] \
& [r_{11}, , z]=[r_{21}^{-1}, , z] &
& [r_{12}, , z]=[r_{22}^{-1}, , z] \
& \
& [t_{11}, , r_{22}]=1 & &
[t_{12}, , r_{22}]= t_{22}^{-1}, z , t_{22} \
& [t_{11}, , r_{21}]=t_{21}^{-1}, z , t_{21}
& & [t_{12}, , r_{21}]= [t_{22}^{-1}, , z] \
& [t_{11}, , t_{22}]=1 & &
[t_{12}, , t_{22}]=[t_{22}^{-1}, , z] \
& [t_{11}, , t_{21}]=[t_{21}^{-1}, , z] &
& [t_{12}, , t_{21}]=
t_{22}^{-1}, z , t_{22} , z^{-1} , t_{21} , z , t_{22}^{-1},z^{-1}
,t_{22},t_{21}^{-1} \
& [t_{11}, , z]=[t_{21}^{-1}, , z] &
& [t_{12}, , z]=[t_{22}^{-1}, , z] \
end{aligned}
end{equation*}

Next, we consider the two extra-special groups of order $32$, whose labels are $[32, , 49]$ and $[32, , 50]$ in GAP4 notation, and whose presentations are as follows:
begin{equation}
begin{split}
mathsf{G}(32, , 49) = langle , & mathsf{r}_1, , mathsf{t}_1, ,
mathsf{r}_2,, mathsf{t}_2, , mathsf{z} ; | ; mathsf{r}_{j}^2 =
mathsf{t}_{j}^2=mathsf{z}^2=1, \
& [mathsf{r}_{j}, , mathsf{z}] = [mathsf{t}_{j}, , mathsf{z}]= 1, \
& [mathsf{r}_j, mathsf{r}_k]= [mathsf{t}_j, mathsf{t}_k] = 1, \
& [mathsf{r}_{j}, ,mathsf{t}_{k}] =mathsf{z}^{- delta_{jk}} , rangle
end{split}
end{equation}

begin{equation}
begin{split}
mathsf{G}(32, , 50) = langle , & mathsf{r}_1, , mathsf{t}_1, ,
mathsf{r}_2,, mathsf{t}_2, , mathsf{z} ; | ; mathsf{r}_{1}^2 =
mathsf{t}_{1}^2=mathsf{z}^2=1, ; mathsf{r}_{2}^2 =
mathsf{t}_{2}^2=mathsf{z}\
& [mathsf{r}_{j}, , mathsf{z}] = [mathsf{t}_{j}, , mathsf{z}]= 1, \
& [mathsf{r}_j, mathsf{r}_k]= [mathsf{t}_j, mathsf{t}_k] = 1, \
& [mathsf{r}_{j}, ,mathsf{t}_{k}] =mathsf{z}^{- delta_{jk}} , rangle
end{split}
end{equation}

There are two surjective group homomorphisms $$varphi_{49} colon mathsf{B} to mathsf{G}(32, , 49), quad varphi_{50} colon mathsf{B} to mathsf{G}(32, , 50),$$ expressed in both cases by
$$[r_{11}, ; t_{11}, ; r_{12}, ; t_{12}, ; r_{21}, ; t_{21}, ; r_{22}, ; t_{22}, ; z] mapsto [mathsf{t_2}, ; mathsf{t}_1, ; mathsf{t}_1 mathsf{r}_2, ; mathsf{r}_1, ; mathsf{t}_2 mathsf{r}_1, ; mathsf{r}_2, ; mathsf{t}_1, ; mathsf{t}_2, ; mathsf{z}].$$
Let us denote their kernels by $mathsf{K}_{49}$ and $mathsf{K}_{50}$, respectively.

Question. Are $mathsf{K}_{49}$ and $mathsf{K}_{50}$ isomorphic groups?

I have constructed $mathsf{K}_{49}$ and $mathsf{K}_{50}$ by using GAP4, and I tried to make some calculations on them. Unfortunately, GAP4 does not work with infinite groups so well as it works with finite groups, so the computational approach seems to be difficult (at least for me). The usual invariants that I was able to compute ($mathtt{AbelianInvariants}$, $mathtt{MaximalAbelianQuotient})$ were not useful in order to distinguish them.

Edit: Here is the GAP4 code I used in order to construct the group $mathsf{B}$ and the two kernels.

ColorPrompt(true);

#redefine commutators
comm:=function(x, y) return x*y*x^-1*y^-1; end;

#Construction of the Group B
F:=FreeGroup("r11", "t11", "r12", "t12", "r21", "t21", "r22", "t22", "z");;
r11:=F.1;; t11:=F.2;; r12:=F.3;; t12:=F.4;;
r21:=F.5;; t21:=F.6;; r22:=F.7;; t22:=F.8;; z:=F.9;;

U:=z^2;;
S1:=comm(r12^(-1), t12^(-1))*t12^(-1)*comm(r11^(-1), t11^(-1))*t12*z^(-1);;
S2:=comm(r21^(-1), t21)*t21*comm(r22^(-1), t22)*t21^(-1)*z;;
R1:=comm(r11, r22);;
R2:=comm(r11, r21);;
R3:=comm(r11, t22);;
R4:=comm(r11, t21)*z;; 
R5:=comm(r11, z)*comm(z, r21^(-1));;
R6:=comm(r12, r22);;
R7:=z^(-1)*r21*r22^(-1)*z*r22*r21^(-1)*comm(r21, r12);;
R8:=comm(r12, t22)*z;;
R9:=comm(r12, t21)*comm(t21, z^(-1));;
R10:=comm(r12, z)*comm(z, r22^(-1));;
T1:=comm(t11, r22);;
T2:=comm(t11, r21)*t21^(-1)*z^(-1)*t21;;
T3:=comm(t22, t11);;
T4:=comm(t11, t21)*comm(z, t21^(-1));;
T5:=comm(t11, z)*comm(z, t21^(-1));;
T6:=comm(t12, r22)*t22^(-1)*z^(-1)*t22;;
T7:=comm(t12, r21)*comm(z, t22^(-1));;
T8:=comm(t12, t22)*comm(z, t22^(-1));;
T9:=t22^(-1)*z*t22*z^(-1)*t21*z*t22^(-1)*z^(-1)*t22*t21^(-1)*comm(t21, t12);;
T10:=comm(t12, z)*comm(z, t22^(-1));;

B:=F/[U, S1, S2, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10];;
r11:=B.1;; t11:=B.2;; r12:=B.3;; t12:=B.4;;
r21:=B.5;; t21:=B.6;; r22:=B.7;; t22:=B.8;; z:=B.9;;

   
#construction of G(32, 49) 
f:=FreeGroup("r1", "t1", "r2", "t2", "s");
r1:=f.1;; t1:=f.2;; r2:=f.3;; t2:=f.4;; s:=f.5;;
g:=f/[r1^2, t1^2, r2^2, t2^2, s^2, comm(r1, s), comm(t1, s), comm(r2, s), comm(t2,s),
comm(r1, r2), comm(t1, t2), comm(r1, t1)*s, comm(r1, t2), comm(r2, t1), comm(r2, t2)*s];;
r1:=g.1;; t1:=g.2;; r2:=g.3;; t2:=g.4;; s:=g.5;;
IdSmallGroup(g); StructureDescription(g);
    

#construction of the group homomorphism B->G(32, 49)
hom49:=GroupHomomorphismByImages(B,g,[r11, t11, r12, t12, r21, t21, r22, t22, z],
[t2, t1, r2*t1, r1, r1*t2, r2, t1, t2, s]);
K49:=Kernel(hom49); 
    

#construction of G(32, 50);
o:=FreeGroup("u1", "v1", "u2", "v2", "y");
u1:=o.1;; v1:=o.2;; u2:=o.3;; v2:=o.4;; y:=o.5;;
h:=o/[u1^2, v1^2, u2^2*(y^-1), v2^2*(y^-1), y^2, comm(u1, y), comm(v1, y), comm(u2, y), comm(v2,y), comm(u1, u2), comm(v1, v2), comm(u1, v1)*y, comm(u1, v2), comm(u2, v1), comm(u2, v2)*y];;
u1:=h.1;; v1:=h.2;; u2:=h.3;; v2:=h.4;; y:=h.5;;
IdSmallGroup(h); StructureDescription(h);
    

#construction of the group epimomorphism B->G(32, 50)
hom50:=GroupHomomorphismByImages(B,h,[r11, t11, r12, t12, r21, t21, r22, t22, z],
[v2, v1, u2*v1, u1, u1*v2, u2, v1, v2, y]);
K50:=Kernel(hom50); 

Add your own answers!

Related Questions

Lorentzian vs Gaussian Fitting Functions

5  Asked on January 1, 2022 by jimmidyjoo

 

Motives under de-singularization

0  Asked on January 1, 2022 by user161697

 

Ask a Question

Get help from others!

© 2022 AnswerBun.com. All rights reserved. Sites we Love: PCI Database, MenuIva, UKBizDB, Menu Kuliner, Sharing RPP, SolveDir