MathOverflow Asked on January 3, 2022
According to page 1-2 of this paper (https://arxiv.org/abs/0906.4286), Mahler has established the inequality
$$|alpha_1 – alpha_2| geq H(alpha_1)^{-(d-1)} tag 1 $$
to be valid for all pairs of conjugate algebraic numbers $alpha_1$ and $alpha_2$ of degree $d$. Here $H(alpha)$ is, as stated therein, the "absolute height of the minimal polynomial of $alpha$ over $mathbb Z$".
On the other hand, the equivalent definition of absolute and logarithmic height that I am familiar with is the following:
For an algebraic integer $alpha$ and a finite extension $K$ of $mathbb Q$ containing $alpha$, we define the absolute logarithmic height $h(alpha)$ of $alpha$ by
$$h(alpha) := sum_{v in M_K} frac{[K_v:mathbb Q_v]}{[K:mathbb Q]} log max {1, |alpha|_v }$$
where the sum runs over a set $M_K$ of places of $K$ satisfying the product formula and $K_v$ (respectively $mathbb Q_v$) denotes the completion of $K$ (respectively $mathbb Q$) with respect to the place $v in M_K$.
This is equal to the logarithm of the Mahler measure (absolute value of the product of the conjugates lying outside he unit circle) of $alpha$ when $alpha$ is an algebraic integer. As far as I know, for algebraic integers $alpha$ we can define its multiplicative height $H(alpha)$ by $e^{h(alpha)}$.
My question is the following: is this multiplicative height the same one as referred to by the "$H(alpha)$" occurring in equation $(1)$ (that is, the "$H(alpha)$" appearing in the paper linked above)? Or is that some normalized version of the multiplicative height?
The reason I ask this is that Mahler’s paper (reference [18] of the attached paper) establishes that
$$delta(alpha) > sqrt 3 d^{-(d+2)/2} |D(alpha)|^{1/2} M(alpha)^{-(d-1)} tag 2$$
where $delta(alpha)$ is the least distance between two conjugates of $alpha$, $d:=deg alpha$ and $D(alpha)$ is the discriminant of (the minimal polynomial of) $alpha$; and I think what follows from this is that $|alpha_1 – alpha_2| > H(alpha)^{-d^2}$, with $H(alpha):=e^{h(alpha)}$ being the multiplicative height defined in the previous paragraph. So either there is some error/bad estimate in my computation (in which case I would really like to know how $(1)$ exactly follows from $(2)$ with $H(alpha)$ denoting the multiplicative height in both inequalities) or it may be possible that the $H(alpha)$ in $(1)$ is some ‘exponentiated’ version of the multiplicative height (or $(1)$ could be a typo in the paper)? I would really appreciate some help or clarification. Thank you.
0 Asked on December 15, 2020 by shaoyang-zhou
1 Asked on December 15, 2020
1 Asked on December 14, 2020 by nahila
2 Asked on December 10, 2020 by yada
1 Asked on December 9, 2020 by neothecomputer
ac commutative algebra algebraic number theory nt number theory ra rings and algebras
1 Asked on December 9, 2020 by mb2009
0 Asked on December 8, 2020 by dbcohsmoothness
ag algebraic geometry derived algebraic geometry derived categories homological algebra
1 Asked on December 7, 2020
1 Asked on December 7, 2020 by qsh
algebraic groups geometric group theory gr group theory linear algebra rt representation theory
0 Asked on December 6, 2020 by sharpe
0 Asked on December 6, 2020 by xindaris
at algebraic topology cohomology limits and colimits sheaf cohomology
0 Asked on December 6, 2020 by winawer
lie superalgebras mp mathematical physics reference request rt representation theory vertex algebras
1 Asked on December 5, 2020 by leo-herr
ag algebraic geometry algebraic curves birational geometry blow ups
1 Asked on December 4, 2020 by lyrically-wicked
1 Asked on December 4, 2020 by andrea-marino
calculus of variations connections differential topology geodesics transversality
0 Asked on December 3, 2020 by eric-yan
0 Asked on December 3, 2020 by user164740
ag algebraic geometry at algebraic topology complex geometry dg differential geometry gt geometric topology
2 Asked on December 1, 2020 by wolfgang
big picture co combinatorics modular forms special functions
2 Asked on December 1, 2020 by bernhard-boehmler
computer algebra finite groups gr group theory ra rings and algebras rt representation theory
Get help from others!
Recent Answers
Recent Questions
© 2023 AnswerBun.com. All rights reserved. Sites we Love: PCI Database, MenuIva, UKBizDB, Menu Kuliner, Sharing RPP, SolveDir