MathOverflow Asked by saxen on October 6, 2020
I would like to solve the following integral
$$
int_0^infty e^{-a k^2} J_{3/2}(b k) J_{3/2}(c k) J_{3/2}(f k) J_{1/2}(r k) k^{-3} dk,
$$
where $a,b,c,f,r > 0$, and $J_nu(x)$ is the Bessel function of order $nu$.
An equivalent (within proportionality) integral in terms of spherical Bessel functions is
$$
int_0^infty e^{-a k^2} j_1(b k) j_1(c k) j_1(f k) j_{0}(r k) k^{-1} dk,
$$
So far I haven’t found the integral in any integration tables. Any guidance on how to solve it would be most appreciated!
Let's consider the second integral, which can be written in the following form: $$ I(p, q, i, j, k, l; a, b, c, d) := int_0^infty dt, exp(-p t^2) t^q j_i(a t) j_j(b t) j_k(c t) j_l(d t) $$ where in your case, $i = j = k = 1$, $l = 0$, and $q = -1$.
These kinds of integrals (as well their generalization to a product of arbitrarily many spherical Bessel functions) are discussed in Fabrikant - Elementary exact evaluation of infinite integrals of the product of several spherical Bessel functions, power and exponential, where the main idea is to use the following identity: begin{align} I(p, q, i, j, k, l; a, b, c, d) &= (-1)^{i+j+k+l} a^i b^j c^k d^l frac{partial^i}{(a partial a)^i} frac{partial^j}{(b partial b)^j} frac{partial^k}{(c partial c)^k} frac{partial^l}{(d partial d)^l} biggl[\ &int_0^infty dt exp(-p t^2) frac{ j_0(a t) j_0(b t) j_0(c t) j_0(d t) } { t^{i + j + k + l - q} } biggr]. end{align}
The key point is to now expand the zeroth order spherical Bessel functions into trigonometric functions, and converting the products of the trigonometric functions into sums: begin{align} sin(ax) sin(bx) sin(cx) sin(dx) =& frac{1}{8} biggl{ cos[(a + b + c + d)x] + cos[(a + b - c - d)x] + cos[(a - b + c - d)x]\ &+ cos[(a - b - c + d)x] - cos[(-a + b + c + d)x] - cos[(a - b + c + d)x]\ &- cos[(a + b - c + d)x] - cos[(a + b + c - d)x] biggr} end{align} followed by the use of the following integral, which is not considered in the reference above, but can be found in Gradshteyn and Ryzhik, 7th ed., formula 3.953.8: $$ mathcal{I}(p, s; n) := int_0^infty dt, t^n exp(-p t^2) cos(s t) = frac{1}{2} p^{frac{-(n + 1)}{2}} , e^{-s^2 / 4 p} Gamma left(frac{1}{2} + frac{n}{2}right) , _1F_1left(-frac{n}{2}; frac{1}{2}; frac{s^2}{4 p}right). $$
Note that the formal requirement is that $operatorname{Re}(n) > -1$, but the above result can be understood as an analytic continuation for general values $p, s, n$.
Additionally, it can happen that one of the "angles" above is zero, in which case we have the integral: $$ mathcal{I}(p, 0; n) := int_0^infty dt, t^n exp(-p t^2) = frac{1}{2} p^{-frac{n}{2}-frac{1}{2}} Gamma left(frac{n+1}{2}right) $$ with the same condition on $n$ as above.
The result in your specific case is then: begin{align} I(p, -1, 1, 1, 1, 0; a, b, c, d) &= - a b c frac{partial}{(a partial a)} frac{partial}{(b partial b)} frac{partial}{(c partial c)} int_0^infty dt exp(-p t^2) frac{ j_0(a t) j_0(b t) j_0(c t) j_0(d t) } { t^4 }\ &= - a b c frac{partial}{(a partial a)} frac{partial}{(b partial b)} frac{partial}{(c partial c)} int_0^infty dt exp(-p t^2) frac{ sin(a t) sin(b t) sin(c t) sin(d t) } { a, b, c, d, t^8 }\ &= - frac{partial}{partial a} frac{partial}{partial b} frac{partial}{partial c} bigg[ frac{1}{a, b, c, d} int_0^infty dt exp(-p t^2) frac{ 1 } { t^8 } frac{1}{8} bigg{ \ &cos[(a + b + c + d)t] + cos[(a + b - c - d)t] + cos[(a - b + c - d)t] \ &+ cos[(a - b - c + d)t] - cos[(-a + b + c + d)t] - cos[(a - b + c + d)t] \ &- cos[(a + b - c + d)t] - cos[(a + b + c - d)t] bigg} bigg] \ &= - frac{1}{8} frac{partial}{partial a} frac{partial}{partial b} frac{partial}{partial c} biggl{frac{1}{a, b, c, d} \ &mathcal{I}(p, a + b + c + d; -8) + mathcal{I}(p, a + b - c - d; -8) + mathcal{I}(p, a - b + c - d; -8) \ &+ mathcal{I}(p, a - b - c + d; -8) - mathcal{I}(p, -a + b + c + d; -8) - mathcal{I}(p, a - b + c + d; -8) \ &- mathcal{I}(p, a + b - c + d; -8) - mathcal{I}(p, a + b + c - d; -8) biggr}. end{align}
The explicit result is fairly cumbersome to fully write out; below is an example Mathematica code which can be used as a starting point to generate the full solution (when $a pm b pm c pm d neq 0$) and compare it with the numerical result:
numeric[p_, a_, b_, c_, d_] := NIntegrate[
Exp[-p t^2] SphericalBesselJ[1, a t] SphericalBesselJ[1,
b t] SphericalBesselJ[1, c t] SphericalBesselJ[0, d t]/t,
{t, 0, Infinity}
];
integral[p_, s_, n_] :=
1/2 p^(-(n + 1)/2) Exp[-s^2/(4 p)] Gamma[
1/2 + n/2] Hypergeometric1F1[-n/2, 1/2, s^2/(4 p)];
result = -1/8 Table[
Series[
expression,
{epsilon, 0, 0}
] // Normal // D[#/(a b c d), a, b, c] &,
{
expression,
{
integral[p, a + b + c + d, -8 + epsilon],
integral[p, a + b - c - d, -8 + epsilon],
integral[p, a - b + c - d, -8 + epsilon],
integral[p, a - b - c + d, -8 + epsilon],
-integral[p, -a + b + c + d, -8 + epsilon],
-integral[p, a - b + c + d, -8 + epsilon],
-integral[p, a + b - c + d, -8 + epsilon],
-integral[p, a + b + c - d, -8 + epsilon]
}
}
] // Total;
No idea if the solution which the code above generates can be simplified though.
Answered by JCGoran on October 6, 2020
0 Asked on December 15, 2021 by inkspot
ag algebraic geometry reference request rt representation theory
1 Asked on December 15, 2021 by chris-ramsey
fa functional analysis linear algebra matrices oa operator algebras
5 Asked on December 13, 2021 by william-stagner
ct category theory ho history overview kt k theory and homology rt representation theory symmetric functions
1 Asked on December 13, 2021
1 Asked on December 13, 2021
2 Asked on December 13, 2021 by mirco-a-mannucci
0 Asked on December 13, 2021
1 Asked on December 13, 2021 by jdoe2
3 Asked on December 13, 2021 by ikp
0 Asked on December 13, 2021
1 Asked on December 13, 2021 by andi-bauer
ct category theory monoidal categories symmetric monoidal categories
1 Asked on December 13, 2021 by user45397
0 Asked on December 13, 2021
ca classical analysis and odes differential equations fa functional analysis real analysis rough paths
0 Asked on December 13, 2021
dg differential geometry geometric measure theory measure theory numerical analysis of pde oc optimization and control
2 Asked on December 13, 2021
1 Asked on December 11, 2021
fa functional analysis nuclear spaces short exact sequences tensor products
1 Asked on December 11, 2021
dg differential geometry lie groups random matrices rt representation theory st statistics
0 Asked on December 11, 2021
0 Asked on December 11, 2021 by titouan-vayer
1 Asked on December 11, 2021
foundations lo logic mathematical philosophy proof theory reference request
Get help from others!
Recent Questions
Recent Answers
© 2022 AnswerBun.com. All rights reserved. Sites we Love: PCI Database, MenuIva, UKBizDB, Menu Kuliner, Sharing RPP, SolveDir