MathOverflow Asked by A. C. Biller on January 5, 2022

Let $R$ denote a commutative ring with identity and let $R[[X]]$ denote the

ring of formal power series over $R$ in an indeterminate $X$. If $I$ is an ideal of $R$,

then $I[[X]]$, the set of power series of $R[[X]]$ with coefficients all in $I$. Now if $P$ is a prime ideal of $R$, then $P[[X]]$ is a prime ideal of $R[[X]]$ that is contained in the prime ideal $langle P, xrangle$ of $R[[X]]$ such that $langle P, X ranglecap R=P$. Now let $Q$ be a prime ideal of $R[[X]]$ such that $P[[X]]subseteq Q$ and $Qcap R=P$. Is there any characterization for such a $Q$? (I guess that $langle P, Xrangle$ is the only ideal with that property.)

In general, $(P, X)$ is not the only prime containing $P[[X]]$ and contracting to $P$. I don't have anything to say about the problem of characterizing such primes, but in general it seems extremely hard. Let's focus on the case $P = 0$.

As a motivating example we can even use the integers. The ring $mathbb{Z}[[X]]$ is a UFD. For any prime $p$ and power series $F$, it is clear that $p +xF$ is irreducible in $mathbb{Z}[[X]]$ and hence prime. Moreover if we take $f in mathbb{Z}[X]$ to be such that the content $c(f)$ of $f$, that is the ideal generated by the coefficients of $f$ in $mathbb{Z}$, is coprime to $p mathbb{Z}$, then additionally $(p + Xf) cap mathbb{Z}= 0$. One way to show this would be to appeal to the Dedekind-Mertens content formula$^1$, which asserts that over any ring $R$, if $f$ is a polynomial of degree $n$, $G,H in R[[X]]$, with $fG=H$, then $c(f)c(G)^{n+1} = c(G)^{n} c(H)$. Here $c(F)$ denotes the content ideal of the power series $F$. From here, if we had $(p+Xf)G = p G_0 in mathbb{Z}$ then the D-M formula would imply $frac{1}{p} c(G)^k subseteq c(G)^k$ which would in turn imply $p$ is a unit (absurd). **For every prime $p$, we have found infinitely many polynomials which are prime in $mathbb{Z}[[X]]$ and which lie over $0$ in $mathbb{Z}$**. Moreover in this way we can be sure to find lots of *distinct* primes in $mathbb{Z}[[X]]$, which follows for example from this old post of mine on stackexchange.

I'm not sure to what extent this way of producing principal primes over $0$ generalizes to other rings. It does work verbatim for any Archimedean GCD domain $D$ for which $D[[X]]$ has its irreducible elements prime. The tough part is that last bit, which is a very delicate property. However, it is sufficient that $D[[X]]$ be a UFD, which is a well-studied problem. So for example this argument applies just as well to any regular UFD.

$^1$ See theorem 3.6 in the paper *Zero divisors in power series rings* by R. Gilmer, A. Grams, and T. Parker [Journal für die reine und angewandte Mathematik (1975), EUDML Link]

Answered by Badam Baplan on January 5, 2022

1 Asked on January 9, 2021 by ben-macadam

0 Asked on January 8, 2021 by user158773

complex geometry complex manifolds cv complex variables riemann surfaces vector bundles

0 Asked on January 8, 2021 by ma-joad

fa functional analysis functional calculus sp spectral theory unbounded operators

1 Asked on January 7, 2021 by b-merlot

0 Asked on January 7, 2021

filtrations markov chains measure theory pr probability stochastic processes

2 Asked on January 6, 2021 by logictheorist

1 Asked on January 5, 2021 by thiku

1 Asked on January 5, 2021 by cabbage

0 Asked on January 4, 2021 by qiaochu-yuan

1 Asked on January 4, 2021 by adam-p-goucher

0 Asked on January 4, 2021 by seddik-merdaci

1 Asked on January 4, 2021 by vassilis-papanicolaou

1 Asked on January 3, 2021 by user97621

1 Asked on January 2, 2021 by user666

finite groups modules noncommutative algebra ra rings and algebras rt representation theory

47 Asked on January 2, 2021 by roman-starkov

0 Asked on January 1, 2021 by user263322

algorithms convex optimization limits and convergence nonlinear optimization

1 Asked on December 31, 2020 by bernied

4 Asked on December 30, 2020 by gottfried-helms

2 Asked on December 30, 2020 by user163840

Get help from others!

Recent Answers

- Lex on Does Google Analytics track 404 page responses as valid page views?
- Peter Machado on Why fry rice before boiling?
- Jon Church on Why fry rice before boiling?
- haakon.io on Why fry rice before boiling?
- Joshua Engel on Why fry rice before boiling?

Recent Questions

- How Do I Get The Ifruit App Off Of Gta 5 / Grand Theft Auto 5
- Iv’e designed a space elevator using a series of lasers. do you know anybody i could submit the designs too that could manufacture the concept and put it to use
- Need help finding a book. Female OP protagonist, magic
- Why is the WWF pending games (“Your turn”) area replaced w/ a column of “Bonus & Reward”gift boxes?
- Does Google Analytics track 404 page responses as valid page views?

© 2023 AnswerBun.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP