How to separate wavenumber $k$ into real and imaginary parts?

Physics Asked by park ning on December 15, 2020

In $k^2 – frac{omega^2}{c_o^2} + (tau_{alpha} i omega)^{alpha} k^2 = 0$, $k$ is the wavenumber, $omega$ is angular frequency, others are constants. How can I separate the wavenumber $k$ into real and imaginary parts, $k = frac{omega}{c(omega)} – i alpha_k$,?

One Answer

$k^2$ is easy and I assume you know how to expand that into its real and imaginary parts. As for $ln k^2$, use the fact that (the principal branch of) $ln(r e^{itheta}) = ln(r) + itheta$. So, if you can write $k^2$ in the form $r e^{itheta}$, you're done. Now, writing a complex number $a + i b$ in its polar form $r e^{itheta}$ isn't hard: $r = sqrt{a^2 + b^2}$ and $theta = arctan left( dfrac{b}{a} right)$.

Answered by wltrup on December 15, 2020

Add your own answers!

Related Questions

Fluid Mechanics Infinite Plate Assumption

0  Asked on January 8, 2021 by johz


How do photons carry information?

1  Asked on January 8, 2021 by manish-kumar-singh


Big crunch theory

1  Asked on January 8, 2021 by kawaljeet-kaur


How does magnetic field store energy?

4  Asked on January 8, 2021 by soumyadwip-chanda


Ask a Question

Get help from others!

© 2023 All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP