TransWikia.com

Total spin of two spin-$1/2$ particles

Physics Asked on April 8, 2021

On my book I read:

$S_{z-tot}chi_+(1)chi_+(2)=[S_{1z}+S_{2z}]chi_+(1)chi_+(2)=[S_{1z}chi_+(1)]chi_+(2)+[S_2chi_+(2)]chi_+(1)=…$

Now, I have two questions:

  • What’s $chi_+(1)chi_+(2)$ ? I know that $chi_+=(1,0)$ but I really don’t understand that writing (what is a product between vectors?!). Is it maybe just a way to indicate a vector in $C^4$? Or instead it is a matrix or other?
  • What’s $S_{z-tot}$? Is it 2×2 matrix or a, 4×4 matrix or other?

I also don’t understand why the book distinguishes $S_{1z}$ and $S_{2z}$, aren’t them the same 2×2 matrix defined for the single electron?

Thanks for your attention and please answer in a simple way (I’m a begginer in these subjects).

5 Answers

You must study about product states, product space of two (linear) spaces, product of linear transformations etc (product symbol $;'otimes;'$) begin{equation} chi_+(1)chi_+(2) equiv chi_+(1) otimeschi_+(2) tag{01} end{equation} begin{equation} S_{z-tot}= S_{1z}+S_{2z}equiv left(S_{1z} otimes I_2right)+ left(I_1 otimes S_{2z}right) tag{02} end{equation}

begin{align} &S_{z-tot}chi_+(1)chi_+(2)=[S_{1z}+S_{2z}]chi_+(1)chi_+(2) nonumber &equiv left[left(S_{1z} otimes I_2right)+ left(I_1 otimes S_{2z}right)right]left[chi_+(1) otimeschi_+(2)right] nonumber &=left(S_{1z} otimes I_2right)left[chi_+(1) otimeschi_+(2)right]+left(I_1 otimes S_{2z}right)left[chi_+(1) otimeschi_+(2)right] nonumber &=left[S_{1z}chi_+(1)right] otimeschi_+(2)+chi_+(1) otimesleft[S_{2z}chi_+(2)right] tag{03} end{align}


A representation : begin{equation} chi_+(1)= begin{bmatrix} xi_1 xi_2 end{bmatrix};,; chi_+(2)= begin{bmatrix} eta_1 eta_2 end{bmatrix} quad Longrightarrow quad chi_+(1) otimeschi_+(2) = begin{bmatrix} xi_1 eta_1 xi_1 eta_2 xi_2 eta_1 xi_2 eta_2 end{bmatrix} tag{04} end{equation} Now begin{align} & S_{1z}= begin{bmatrix} a_{11} & a_{12} a_{21} & a_{22} end{bmatrix};,; I_2= begin{bmatrix} 1 & 0 0 & 1 end{bmatrix} nonumber &quad Rightarrow quad S_{1z} otimes I_2= begin{bmatrix} a_{11} & a_{12} a_{21} & a_{22} end{bmatrix} otimes begin{bmatrix} 1 & 0 0 & 1 end{bmatrix} = begin{bmatrix} a_{11}cdotbegin{bmatrix} 1 & 0 0 & 1 end{bmatrix} & a_{12}cdotbegin{bmatrix} 1 & 0 0 & 1 end{bmatrix} & a_{21}cdotbegin{bmatrix} 1 & 0 0 & 1 end{bmatrix} & a_{22}cdotbegin{bmatrix} 1 & 0 0 & 1 end{bmatrix} end{bmatrix} nonumber &quad Rightarrow quad S_{1z} otimes I_2= begin{bmatrix} a_{11} & 0 & a_{12} & 0 0 & a_{11} & 0 & a_{12} a_{21} & 0 & a_{22} & 0 0 & a_{21} & 0 & a_{22} end{bmatrix} tag{05} end{align} and begin{align} & I_1= begin{bmatrix} 1 & 0 0 & 1 end{bmatrix};,; S_{2z}= begin{bmatrix} b_{11} & b_{12} b_{21} & b_{22} end{bmatrix} nonumber &quad Rightarrow quad I_1 otimes S_{2z}= begin{bmatrix} 1 & 0 0 & 1 end{bmatrix} otimes begin{bmatrix} b_{11} & b_{12} b_{21} & b_{22} end{bmatrix} = begin{bmatrix} 1cdot begin{bmatrix} b_{11} & b_{12} b_{21} & b_{22} end{bmatrix}&0cdotbegin{bmatrix} b_{11} & b_{12} b_{21} & b_{22} end{bmatrix} & 0cdotbegin{bmatrix} b_{11} & b_{12} b_{21} & b_{22} end{bmatrix}& 1cdotbegin{bmatrix} b_{11} & b_{12} b_{21} & b_{22} end{bmatrix} end{bmatrix} nonumber &quad Rightarrow quad I_1 otimes S_{2z}= begin{bmatrix} b_{11} & b_{12} & 0 & 0 b_{21} & b_{22} & 0 & 0 0 & 0 & b_{11} & b_{12} 0 & 0 & b_{21} & b_{22} end{bmatrix} tag{06} end{align} From equations (05) and (06) begin{equation} S_{z-tot}=left(S_{1z} otimes I_2right)+ left(I_1 otimes S_{2z}right)= begin{bmatrix} left(a_{11}+b_{11}right) & b_{12} & a_{12} & 0 b_{21} & left(a_{11}+b_{22}right) & 0 & a_{12} a_{21} & 0 & left(a_{22}+b_{11}right) & b_{12} 0 & a_{21} & b_{21} & left(a_{22}+b_{22}right) end{bmatrix} tag{07} end{equation} If for example begin{equation} S_{1z}=tfrac{1}{2} begin{bmatrix} 1 & 0 0 &!!! -!1 end{bmatrix};,; S_{2z}=tfrac{1}{2} begin{bmatrix} 1 & 0 0 &!!! -!1 end{bmatrix} tag{08} end{equation} then begin{equation} S_{z-tot}=left(S_{1z} otimes I_2right)+ left(I_1 otimes S_{2z}right)= begin{bmatrix} 1 & 0 & 0 & 0 0 & 0 & 0 & 0 0 & 0 & 0 & 0 0 & 0 & 0 &!!! -!1 end{bmatrix} tag{09} end{equation} The matrix in (09) is already diagonal with eigenvalues 1,0,0,-1. Rearranging rows and columns we have
begin{equation} S'_{z-tot}= begin{bmatrix} begin{array}{c|cccc} 0 & 0 & 0 & 0 hline 0 & 1 & 0 & 0 0 & 0 & 0 & 0 0 & 0 & 0 & !!!!-!1 end{array} end{bmatrix} = begin{bmatrix} begin{array}{c|c} S_{z}^{(j=0)} & 0_{1times 3} hline 0_{3times1} & S_{z}^{(j=1)} end{array} end{bmatrix} tag{10} end{equation} because, as could be proved(1), the product 4-dimensional Hilbert space is the direct sum of two orthogonal spaces : the 1-dimensional space of the angular momentum $;j=0;$ and the 3-dimensional space of the angular momentum $;j=1;$ : begin{equation} boldsymbol{2}boldsymbol{otimes}boldsymbol{2}=boldsymbol{1}boldsymbol{oplus}boldsymbol{3} tag{11} end{equation} In general for two independent angular momenta $;j_{alpha};$ and $;j_{beta};$, living in the $;left(2j_{alpha}+1right)-$ dimensional and $;left(2j_{beta}+1right)-$ dimensional spaces $;mathsf{H}_{boldsymbol{alpha}};$ and $;mathsf{H}_{boldsymbol{beta}};$ respectively, their coupling is achieved by constructing the $;left(2j_{alpha}+1right)cdotleft(2j_{beta}+1right)-$ dimensional product space $;mathsf{H}_{boldsymbol{f}};$
begin{equation} mathsf{H}_{boldsymbol{f}}equiv mathsf{H}_{boldsymbol{alpha}}boldsymbol{otimes}mathsf{H}_{boldsymbol{beta}} tag{12} end{equation} Then the product space $:mathsf{H}_{boldsymbol{f}}:$ is expressed as the direct sum of $:n:$ mutually orthogonal subspaces $:mathsf{H}_{boldsymbol{rho}}: (rho=1,2,cdots,n-1,n) $ begin{equation} mathsf{H}_{boldsymbol{f}}equiv mathsf{H}_{boldsymbol{alpha}}boldsymbol{otimes}mathsf{H}_{boldsymbol{beta}} = mathsf{H}_{boldsymbol{1}}boldsymbol{oplus}mathsf{H}_{boldsymbol{2}} boldsymbol{oplus} cdots boldsymbol{oplus} mathsf{H}_{boldsymbol{n}}=bigoplus_{{boldsymbol{rho}}={boldsymbol{1}}}^{{boldsymbol{rho}}={boldsymbol{n}}} mathsf{H}_{boldsymbol{rho}} tag{13} end{equation} where the subspace $:mathsf{H}_{boldsymbol{rho}}:$ corresponds to angular momentum $;j_{rho};$ and has dimension begin{equation} dim left(mathsf{H}_{boldsymbol{rho}}right) =2cdot j_{rho}+1 tag{14} end{equation} with begin{align} j_{rho} & = vert j_{beta}-j_{alpha} vert +rho - 1: , quad rho=1,2,cdots,n-1,n tag{15a} n & =2cdotmin (j_{alpha}, j_{beta})+1 tag{15b} end{align} Equation (13) is expressed also in terms of the dimensions of spaces and subspaces as : begin{equation} (2j_{alpha}+1)boldsymbol{otimes} (2j_{beta}+1)=bigoplus_{rho=1}^{rho=n}(2j_{rho}+1) tag{16} end{equation} Equation (11) is a special case of equation (16) : begin{equation} j_{alpha}=tfrac{1}{2} :,:j_{beta}=tfrac{1}{2} : quad Longrightarrow quad : j_{1}=0 :,: j_{2}=1 tag{17} end{equation}


(1) the square of total angular momentum $mathbf{S}^2$ expressed in the basis of its common with $:S_{z-tot}:$ eigenvectors has the following diagonal form : begin{equation} mathbf{S'}^2= begin{bmatrix} begin{array}{c|cccc} 0 & 0 & 0 & 0 hline 0 & 2 & 0 & 0 0 & 0 & 2 & 0 0 & 0 & 0 & 2 end{array} end{bmatrix} = begin{bmatrix} begin{array}{c|c} left(mathbf{S'}^2right)^{(j=0)} & 0_{1times 3} hline 0_{3times1} & left(mathbf{S'}^2right)^{(j=1)} end{array} end{bmatrix} tag{10'} end{equation} since for begin{equation} S_{1x}=tfrac{1}{2} begin{bmatrix} 0 & 1 1 & 0 end{bmatrix};,; S_{2x}=tfrac{1}{2} begin{bmatrix} 0 & 1 1 & 0 end{bmatrix} tag{18} end{equation} begin{equation} S_{1y}=tfrac{1}{2} begin{bmatrix} 0 &!!! -!i i & 0 end{bmatrix};,; S_{2y}=tfrac{1}{2} begin{bmatrix} 0 &!!! -!i i & 0 end{bmatrix} tag{19} end{equation} we have begin{equation} S_{x-tot}=left(S_{1x} otimes I_2right)+ left(I_1 otimes S_{2x}right) =tfrac{1}{2} begin{bmatrix} 0 & 1 & 1 & 0 1 & 0 & 0 & 1 1 & 0 & 0 & 1 0 & 1 & 1 & 0 end{bmatrix} tag{20} end{equation} begin{equation} S_{y-tot}=left(S_{1y} otimes I_2right)+ left(I_1 otimes S_{2y}right)=tfrac{1}{2} begin{bmatrix} 0 & !!! -!i & !!! -!i & 0 i & 0 & 0 & !!! -!i i & 0 & 0 & !!! -!i 0 & i & i & 0 end{bmatrix} tag{21} end{equation} and consequently begin{align} S^{2}_{x-tot} & =tfrac{1}{4} begin{bmatrix} 0 & 1 & 1 & 0 1 & 0 & 0 & 1 1 & 0 & 0 & 1 0 & 1 & 1 & 0 end{bmatrix}^{2} =tfrac{1}{2} begin{bmatrix} 1 & 0 & 0 & 1 0 & 1 & 1 & 0 0 & 1 & 1 & 0 1 & 0 & 0 & 1 end{bmatrix} tag{22x} S^{2}_{y-tot} & =tfrac{1}{4} begin{bmatrix} 0 & !!! -!i & !!! -!i & 0 i & 0 & 0 & !!! -!i i & 0 & 0 & !!! -!i 0 & i & i & 0 end{bmatrix}^2 =tfrac{1}{2} begin{bmatrix} 1 & 0 & 0 & !!! -!1 0 & 1 & 1 & 0 0 & 1 & 1 & 0 !!! -!1 & 0 & 0 & 1 end{bmatrix} tag{22y} S^{2}_{z-tot} & =quad !! begin{bmatrix} 1 & 0 & 0 & 0 0 & 0 & 0 & 0 0 & 0 & 0 & 0 0 & 0 & 0 &!!!-!1 end{bmatrix}^{2} =quad !! begin{bmatrix} 1 & 0 & 0 & 0 0 & 0 & 0 & 0 0 & 0 & 0 & 0 0 & 0 & 0 & 1 end{bmatrix} tag{22z} end{align} From begin{equation} mathbf{S}^{2}_{tot}=S^{2}_{x-tot}+S^{2}_{y-tot}+S^{2}_{z-tot} tag{23} end{equation} we have finally begin{equation} mathbf{S}^{2}_{tot}= begin{bmatrix} 2 & 0 & 0 & 0 0 & 1 & 1 & 0 0 & 1 & 1 & 0 0 & 0 & 0 & 2 end{bmatrix} tag{24} end{equation} For its eigenvalues $lambda$ begin{equation} detleft(mathbf{S}^{2}_{tot}-lambda I_{4}right)= begin{vmatrix} 2-lambda & 0 & 0 & 0 0 & 1-lambda & 1 & 0 0 & 1 & 1-lambda & 0 0 & 0 & 0 & 2-lambda end{vmatrix} =-lambda left(2-lambda right)^{3} tag{25} end{equation} So the eigenvalues of $;mathbf{S}^{2}_{tot};$ are: the eigenvalue $lambda_{1}=0=j_{1}left(j_{1}+1right)$ with multiplicity 1 and the eigenvalue $lambda_{2}=2=j_{2}left(j_{2}+1right)$ with multiplicity 3.


Correct answer by Frobenius on April 8, 2021

S E C O N D___ A N S W E R

(upvote or downvote my 1rst answer only. My 2nd,3rd,4th and 5th answers are addenda to it)

Abstract

This answer concerns the theory of product states, product spaces and product transformations in general and especially its application to the coupling of two angular momenta. For if $j_{alpha}$ and $j_{beta}$ are (nonnegative) integers or half-integers representing angular momenta living in the $;left(2j_{alpha}+1right)-$ dimensional and $;left(2j_{beta}+1right)-$ dimensional spaces $;mathsf{H}_{boldsymbol{alpha}};$ and $;mathsf{H}_{boldsymbol{beta}};$ respectively, expressions like this begin{equation} J_{3}=J^{alpha}_{3}+J^{beta}_{3} tag{01} end{equation} have no sense since $J^{alpha}_{3}$ and $J^{beta}_{3}$ are operators acting on different spaces and if $j_{alpha}ne j_{beta}$ of different dimensions too. Coupling is achieved by constructing the $;left(2j_{alpha}+1right)cdotleft(2j_{beta}+1right)-$ dimensional product space $;mathsf{H}_{boldsymbol{f}};$
begin{equation} mathsf{H}_{boldsymbol{f}}equiv mathsf{H}_{boldsymbol{alpha}}boldsymbol{otimes}mathsf{H}_{boldsymbol{beta}} tag{02} end{equation} from the product states. Following a proper method, operators on different spaces, such as $J^{alpha}_{3}$ and $J^{beta}_{3}$ above, are extended to operate on the product space $;mathsf{H}_{boldsymbol{f}}$.

SECTION A : Product Spaces

Let two systems $alpha$ and $beta$ with angular momentum $j_{alpha}$ and $j_{beta}$ respectively. We suppose that the two systems are independent between each other.

If in system $alpha$ the basic vectors $mathbf{a}_{boldsymbol{imath}}$ are the common eigenvectors of $left(mathbf{J}^{alpha}right)^{2}$ and $J^{alpha}_{3}$: begin{align} mathbf{a}_{boldsymbol{imath}} & =boldsymbol{vert} j_{boldsymbol{alpha}},,m^{boldsymbol{alpha}}_{boldsymbol{imath}} boldsymbol{rangle}_{boldsymbol{alpha}} nonumber m^{boldsymbol{alpha}}_{boldsymbol{imath}} & =j_{alpha}-imath+1 tag{03} imath & = 1,2,cdots,2j_{alpha},2j_{alpha}+1 nonumber end{align} then the space of states of system $alpha$ is the $r=left(2j_{alpha}+1right)$-dimensional complex Hilbert space begin{equation} mathsf{H}_{boldsymbol{alpha}}equivleft{boldsymbol{xi}in mathbb{C}^{boldsymbol{r}}: boldsymbol{xi}= sum_{imath=1}^{imath=r}xi_{imath}mathbf{a}_{boldsymbol{imath}} =sum_{imath=1}^{imath=r}xi_{imath}boldsymbol{vert} j_{boldsymbol{alpha}},,m^{boldsymbol{alpha}}_{boldsymbol{imath}} boldsymbol{rangle_{boldsymbol{alpha}}} right}, quad r=2j_{alpha}+1 tag{04} end{equation} This space is essentially identical to $mathbb{C}^{r}$ with the usual inner product begin{equation} langle boldsymbol{xi},boldsymbol{psi}rangle_{alpha} equivsum_{imath=1}^{imath=r}xi_{imath}psi_{imath}^{boldsymbol{*}} tag{05} end{equation} where $;psi_{imath}^{boldsymbol{*}};$ the complex conjugate of $;psi_{imath}$.

In system $alpha$ the component $J^{alpha}_{3}$ and the square of the angular momentum vector $left(mathbf{J}^{alpha}right)^{2}$ are represented relatively to basis $mathbf{a}_{imath}$ by the $r times r=left(2j_{alpha}+1right)times left(2j_{alpha}+1right)$ diagonal matrices

begin{equation} J^{alpha}_{3} = begin{bmatrix} j_{alpha} & 0 & cdots & 0 0 & j_{alpha}-1 & cdots & 0 vdots & vdots & m_{alpha} & vdots 0 & 0 & cdots & -j_{alpha} end{bmatrix}_{boldsymbol{alpha}} tag{06} end{equation} and begin{equation} left(mathbf{J}^{alpha}right)^{2}=left(J^{alpha}_{1}right)^{2}+left(J^{alpha}_{2}right)^{2}+left(J^{alpha}_{3}right)^{2}= j_{alpha}left( j_{alpha}+1right)cdot mathrm{I}_{mathbf{a}} tag{07} end{equation} where $mathrm{I}_{mathbf{a}}$ the $r times r=left(2j_{alpha}+1right)times left(2j_{alpha}+1right)$ identity matrix.

If in system $beta$ the basic vectors $mathbf{b}_{boldsymbol{jmath}}$ are the common eigenvectors of $left(mathbf{J}^{beta}right)^{2}$ and $J^{beta}_{3}$: begin{align} mathbf{b}_{boldsymbol{jmath}} & =boldsymbol{vert} j_{boldsymbol{beta}},,m^{boldsymbol{beta}}_{boldsymbol{jmath}} boldsymbol{rangle}_{boldsymbol{beta}} nonumber m^{boldsymbol{beta}}_{boldsymbol{jmath}} & =j_{beta}-jmath+1 tag{08} jmath & = 1,2,cdots,2j_{beta}, 2j_{beta}+1 nonumber end{align} then the space of states of system $beta$ is the $ s =left(2j_{beta}+1right)$-dimensional complex Hilbert space begin{equation} mathsf{H}_{boldsymbol{beta}}equivleft{boldsymbol{eta}in mathbb{C}^{boldsymbol{s}}: boldsymbol{eta}= sum_{jmath=1}^{imath=s}eta_{jmath}mathbf{b}_{boldsymbol{jmath}} =sum_{jmath=1}^{jmath=s}eta_{jmath}boldsymbol{vert} j_{boldsymbol{beta}},,m^{boldsymbol{beta}}_{boldsymbol{jmath}} boldsymbol{rangle}_{boldsymbol{beta}} right}, quad s=2j_{beta}+1 tag{09} end{equation} This space is essentially identical to $mathbb{C}^{s}$ with the usual inner product begin{equation} langle boldsymbol{eta},boldsymbol{phi}rangle_{beta} equivsum_{jmath=1}^{jmath=r}eta_{jmath}phi_{jmath}^{boldsymbol{*}} tag{10} end{equation} where $;phi_{jmath}^{boldsymbol{*}};$ the complex conjugate of $;phi_{jmath}$.

In system $beta$ the component $J^{beta}_{3}$ and the square of the angular momentum vector $left(mathbf{J}^{beta}right)^{2}$ are represented relatively to basis $mathbf{b}_{jmath}$ by the $ s times s=left(2j_{beta}+1right)times left(2j_{beta}+1right)$ diagonal matrices

begin{equation} J^{beta}_{3} = begin{bmatrix} j_{beta} & 0 & cdots & 0 0 & j_{beta}-1 & cdots & 0 vdots & vdots & m_{beta} & vdots 0 & 0 & cdots & -j_{beta} end{bmatrix}_{boldsymbol{beta}} tag{11} end{equation} and begin{equation} left(mathbf{J}^{beta}right)^{2}=left(J^{beta}_{1}right)^{2}+left(J^{beta}_{2}right)^{2}+left(J^{beta}_{3}right)^{2}= j_{beta}left( j_{beta}+1right)cdot mathrm{I}_{mathbf{b}} tag{12} end{equation} where $mathrm{I}_{mathbf{b}}$ the $ s times s=left(2j_{beta}+1right)times left(2j_{beta}+1right)$ identity matrix.

So let the system $alpha$ be in a state $boldsymbol{xi}$ begin{equation} boldsymbol{xi}= sum_{imath=1}^{imath=r}xi_{imath}mathbf{a}_{boldsymbol{imath}} quad,quad Vertboldsymbol{xi}Vert^{2}= sum_{imath=1}^{imath=r}vertxi_{imath}vert^{2}=1 tag{13} end{equation}
and system $beta$ be in a state $boldsymbol{eta}$ begin{equation} boldsymbol{eta}= sum_{jmath=1}^{imath=s}eta_{jmath}mathbf{b}_{boldsymbol{jmath}} quad,quad Vertboldsymbol{eta}Vert^{2}= sum_{jmath=1}^{jmath=s}verteta_{jmath}vert^{2}=1 tag{14} end{equation} Since

  1. The probability amplitude of system $alpha$ to be in eigenstate $mathbf{a}_{imath}$ is $xi_{imath}$

  2. The probability amplitude of system $beta$ to be in eigenstate $mathbf{b}_{jmath}$ is $eta_{jmath}$ and

  3. The system $alpha$ being in eigenstate $mathbf{a}_{imath}$ is statistically independent of the system $beta$ being in eigenstate $mathbf{b}_{jmath}$

it's reasonable to say that the composite system $f$ is in a product state, let the symbol $mathbf{a}_{imath}boldsymbol{otimes} mathbf{b}_{jmath}$, with probability amplitude the product $xi_{imath}cdoteta_{jmath}$ of the probability amplitudes of the parts.

Including all possible combinations $mathbf{a}_{imath}boldsymbol{otimes} mathbf{b}_{jmath}$ we can say that the composite system is in a product state as follows begin{align} boldsymbol{chi} = boldsymbol{xi} boldsymbol{otimes} boldsymbol{eta} & =left( sum_{imath=1}^{imath=r}xi_{imath}mathbf{a}_{imath}right) boldsymbol{otimes}left( sum_{jmath=1}^{jmath=s}eta_{jmath}mathbf{b}_{jmath}right)= sum_{imath,jmath=1,1}^{imath,jmath=r,s}xi_{imath}eta_{jmath}left( mathbf{a}_{imath} boldsymbol{otimes }mathbf{b}_{jmath}right) tag{15a} Vertboldsymbol{chi}Vert^{2} & = sum_{imath,jmath=1,1}^{imath,jmath=r,s}vertxi_{imath}eta_{jmath}vert^{2}=left(sum_{imath=1}^{imath=r}vertxi_{imath}vert^{2}right)cdotleft(sum_{jmath=1}^{jmath=s}verteta_{jmath}vert^{2}right)=1cdot1=1 tag{15b} end{align} From above equation we conclude that the $;rcdot s;$ states begin{align} mathbf{e}_{1} & equiv mathbf{a}_{1}boldsymbol{otimes} mathbf{b}_{1} =boldsymbol{vert} j_{boldsymbol{alpha}},,j_{boldsymbol{alpha}}boldsymbol{rangle}_{boldsymbol{alpha}}boldsymbol{otimes} boldsymbol{vert} j_{boldsymbol{beta}},,j_{boldsymbol{beta}} boldsymbol{rangle}_{boldsymbol{beta}} nonumber mathbf{e}_{2} & equiv mathbf{a}_{1}boldsymbol{otimes} mathbf{b}_{2} = boldsymbol{vert} j_{boldsymbol{alpha}},,j_{boldsymbol{alpha}}boldsymbol{rangle}_{boldsymbol{alpha}}boldsymbol{otimes} boldsymbol{vert} j_{boldsymbol{beta}},,j_{boldsymbol{beta}}!-!1 boldsymbol{rangle}_{boldsymbol{beta}} nonumber cdots &equiv quad cdots quad : = qquad qquad cdots nonumber mathbf{e}_{k} & equiv mathbf{a}_{imath}boldsymbol{otimes} mathbf{b}_{jmath}: = boldsymbol{vert} j_{boldsymbol{alpha}},,j_{boldsymbol{alpha}}!-!imath!+!1 boldsymbol{rangle}_{boldsymbol{alpha}}boldsymbol{otimes} boldsymbol{vert} j_{boldsymbol{beta}},,j_{boldsymbol{beta}}!-!jmath !+!1boldsymbol{rangle}_{boldsymbol{beta}} tag{16} cdots &equiv quad cdots quad : = qquad qquad cdots nonumber mathbf{e}_{rs} & equiv mathbf{a}_{r}boldsymbol{otimes} mathbf{b}_{s} =boldsymbol{vert} j_{boldsymbol{alpha}},,-j_{boldsymbol{alpha}}boldsymbol{rangle}_{boldsymbol{alpha}}boldsymbol{otimes} boldsymbol{vert} j_{boldsymbol{beta}},,-j_{boldsymbol{beta}} boldsymbol{rangle}_{boldsymbol{beta}} nonumber end{align} as by pair mutually excluded can be consider as basic state vectors of the composite system $f$ and the product state $boldsymbol{chi}$ of equation (15) can be expressed as begin{equation} boldsymbol{chi} =sum_{k=1}^{k=rs}chi_{k}mathbf{e}_{k} tag{17} end{equation} that is, it has relatively to this basis $lbracemathbf{e}_{k}, k=1,2,cdots,rsrbrace$ the following coordinates
begin{equation} boldsymbol{chi}= begin{bmatrix} chi_{1} chi_{2} vdots chi_{k} vdots chi_{rs} end{bmatrix}_{mathbf{e}}= begin{bmatrix} xi_{1}eta_{1} xi_{1}eta_{2} vdots xi_{imath}eta_{jmath} vdots xi_{r}eta_{s} end{bmatrix}_{mathbf{e}}= boldsymbol{xi} boldsymbol{otimes} boldsymbol{eta} tag{18} end{equation} The last equation is the guide to construct the product state $;boldsymbol{xi} boldsymbol{otimes} boldsymbol{eta};$ according to the following scheme : begin{align} boldsymbol{xi} boldsymbol{otimes} boldsymbol{eta} rightarrow boldsymbol{xi}boldsymbol{eta}^{T} & = begin{bmatrix} xi_{1} xi_{2} vdots xi_{imath} vdots xi_{r} end{bmatrix} begin{bmatrix} eta_{1} & eta_{2} & cdots & eta_{jmath} & cdots & eta_{s} end{bmatrix} nonumber & = begin{bmatrix} xi_{1}eta_{1} & xi_{1}eta_{2} & cdots &xi_{1}eta_{jmath} & cdots & xi_{1}eta_{s} xi_{2}eta_{1} & xi_{2}eta_{2} & cdots & xi_{2}eta_{jmath} & cdots & xi_{2}eta_{s} vdots & vdots & ddots & vdots & ddots & vdots xi_{imath}eta_{1} & xi_{imath}eta_{2} & cdots & xi_{imath}eta_{jmath} & cdots & xi_{imath}eta_{s} vdots & vdots & ddots & vdots & ddots & vdots xi_{r}eta_{1} & xi_{r}eta_{2} & cdots & xi_{r}eta_{jmath} & cdots & xi_{r}eta_{s} end{bmatrix} tag{19} end{align} The $rcdot s$ elements of the last matrix are the coordinates of the product state $:boldsymbol{xi} boldsymbol{otimes} boldsymbol{eta}:$ relatively to the basis $:lbracemathbf{e}_{k}, k=1,2,cdots,rsrbrace$. An ordering of these elements is made by transposing the rows of this matrix one after the other, see as shown in the figure below. enter image description here This is according to the following one-to-one correspondence begin{align} (imath,jmath)quad &boldsymbol{longrightarrow} quad ::: k =(imath!!-!!1)s+jmath tag{20a} k ::: quad & boldsymbol{longrightarrow} quad (imath,jmath) = begin{cases} bigl(k/s::,:: sbigr) & text{for $ k/s=left[k/sright]$} bigl(left[k/sright]!!+!!1::,:: k!!-!!left[k/sright]sbigr) & text{otherwise} end{cases} tag{20b} imath=1,2,3cdots,r!!-!!1,r quad quad & jmath=1,2,3cdots,s!!-!!1,s quad quad k=1,2,3cdots,rs!!-!!1,rs tag{20c} end{align} where $;left[k/sright];$ the integer part of $;left(k/sright);$, that is the greater integer less than or equal to $;left(k/sright)$.

This ordering appears in equation (18) where begin{equation} chi_{k}=xi_{imath}eta_{jmath}, qquad k=(imath-1)s+jmath tag{21} end{equation}

Now, selecting all product states in one set $mathcal{H}$ begin{equation} mathcal{H} equiv lbrace ; boldsymbol{xi} boldsymbol{otimes} boldsymbol{eta} ; : ;boldsymbol{xi} in mathsf{H}_{alpha},; boldsymbol{eta} in mathsf{H}_{beta}rbrace tag{22} end{equation} is not a good practice since this space is not even a linear space. Instead of this we select in a space $;mathsf{H}_{f};$ all the linear combinations of the basic product states $lbracemathbf{e}_{k}, k=1,2,3,cdots,rsrbrace$ as defined in equations (16) : begin{equation} mathsf{H}_{f}equiv lbrace ; boldsymbol{chi} ; : ;boldsymbol{chi}=sum_{k=1}^{k=rs}chi_{k}mathbf{e}_{k},;chi_{k} in mathbb{C} rbrace tag{23} end{equation} But as so defined the space $;mathsf{H}_{f};$ is identical to $mathbb{C}^{boldsymbol{rs}}$ and turns to be a Hilbert space by the usual inner product begin{equation} boldsymbol{langle}boldsymbol{chi},boldsymbol{omega}boldsymbol{rangle}_{boldsymbol{f}} equiv sum_{k=1}^{k=rs}chi_{k}omega_{k}^{boldsymbol{*}} qquad boldsymbol{chi},boldsymbol{omega}in mathsf{H}_{f}equiv mathbb{C}^{boldsymbol{rs}} tag{24} end{equation} and induced norm begin{equation} Vert boldsymbol{chi}Vert^{2}=boldsymbol{langle}boldsymbol{chi},boldsymbol{chi}boldsymbol{rangle}_{boldsymbol{f}} = sum_{k=1}^{k=rs}chi_{k}chi_{k}^{boldsymbol{*}}= sum_{k=1}^{k=rs}vertchi_{k}vert^{2} qquad boldsymbol{chi} in mathsf{H}_{f}equiv mathbb{C}^{boldsymbol{rs}} tag{25} end{equation} Note that the inner product (24) is compatible to the following definition for the inner product between product states $; boldsymbol{chi}=boldsymbol{xi} boldsymbol{otimes} boldsymbol{eta};$ and $;boldsymbol{omega}=boldsymbol{psi}boldsymbol{otimes} boldsymbol{phi};$ : begin{align} boldsymbol{langle}boldsymbol{chi},boldsymbol{omega}boldsymbol{rangle}_{boldsymbol{f}} & =sum_{k=1}^{k=rs}chi_{k}omega_{k}^{boldsymbol{*}} =boldsymbol{langle}boldsymbol{xi} boldsymbol{otimes} boldsymbol{eta},boldsymbol{psi}boldsymbol{otimes} boldsymbol{phi}boldsymbol{rangle}_{boldsymbol{f}}=sum_{imath=1}^{imath=r}sum_{jmath=1}^{jmath=s} left(xi_{imath}eta_{jmath} right)left(psi_{imath}phi_{jmath} right)^{boldsymbol{*}} nonumber &=left(sum_{imath=1}^{imath=r} xi_{imath}psi_{imath}^{boldsymbol{*}}right)left( sum_{jmath=1}^{jmath=s} eta_{jmath}phi_{jmath} ^{boldsymbol{*}}right) =boldsymbol{langle}boldsymbol{xi},boldsymbol{psi}boldsymbol{rangle}_{boldsymbol{alpha}}boldsymbol{langle}boldsymbol{eta},boldsymbol{phi}boldsymbol{rangle}_{boldsymbol{beta}} tag{26} end{align} that is begin{equation} boldsymbol{langle}boldsymbol{xi} boldsymbol{otimes} boldsymbol{eta},boldsymbol{psi}boldsymbol{otimes} boldsymbol{phi}boldsymbol{rangle}_{boldsymbol{f}}= boldsymbol{langle}boldsymbol{xi},boldsymbol{psi}boldsymbol{rangle}_{boldsymbol{alpha}}boldsymbol{langle}boldsymbol{eta},boldsymbol{phi}boldsymbol{rangle}_{boldsymbol{beta}} tag{27} end{equation} and for the norm of a product state begin{equation} Vert boldsymbol{chi}Vert^{2}=Vertleft(boldsymbol{xi} boldsymbol{otimes} boldsymbol{eta}right) Vert_{boldsymbol{f}}^{2}=Vertboldsymbol{xi}Vert_{boldsymbol{alpha}}^{2}Vertboldsymbol{eta}Vert_{boldsymbol{beta}}^{2} tag{28} end{equation} So if the two states are normalized, that is $:Vertboldsymbol{xi}Vert_{boldsymbol{alpha}}^{2}=1=Vertboldsymbol{eta}Vert_{boldsymbol{beta}}^{2}:$, then the product state is also normalized $:Vertleft(boldsymbol{xi} boldsymbol{otimes} boldsymbol{eta}right) Vert_{boldsymbol{f}}^{2}=1:$. This is consistent with the total probability to be equal to 1.

Having in mind the definitions (04), (09) of the Hilbert spaces $mathsf{H}_{alpha}$,$mathsf{H}_{beta}$ respectively and the definitions (16)of the basic product states $lbracemathbf{e}_{k}, k=1,2,3,cdots,rsrbrace$, we call the Hilbert space $mathsf{H}_{f}$ defined by (23) the product space of $mathsf{H}_{alpha}$,$mathsf{H}_{beta}$ begin{equation} mathsf{H}_{f}equiv mathsf{H}_{alpha}boldsymbol{otimes}mathsf{H}_{beta} tag{29} end{equation} Note that since $mathsf{H}_{f}$, $mathsf{H}_{alpha}$ and $mathsf{H}_{beta}$ are identical to $mathbb{C}^{boldsymbol{rs}}$,$mathbb{C}^{boldsymbol{r}}$ and $mathbb{C}^{boldsymbol{s}}$ respectively with the usual inner products, equation (29) may be expressed as
begin{equation} mathbb{C}^{boldsymbol{rs}}equiv mathbb{C}^{boldsymbol{r}}boldsymbol{otimes}mathbb{C}^{boldsymbol{s}} tag{30} end{equation} Product of spaces must not be confused with their cartesian product as shown below begin{equation} mathbb{C}^{boldsymbol{r}}times mathbb{C}^{boldsymbol{s}}equiv mathbb{C}^{boldsymbol{r+s}}neq mathbb{C}^{rs}equiv mathbb{C}^{boldsymbol{r}}boldsymbol{otimes} mathbb{C}^{boldsymbol{s}} tag{31} end{equation}

(to be continued in THIRD___ANSWER)

Answered by Frobenius on April 8, 2021

T H I R D___ A N S W E R

(upvote or downvote my 1rst answer only. My 2nd,3rd,4th and 5th answers are addenda to it)

(continued from S E C O N D___ A N S W E R )

SECTION B : Product Transformations

In this SECTION we'll try to define, in a consistent way, linear transformations in a product space from linear transformations in the component spaces.

So, let the $r$-dimensional complex Hilbert space defined by (04) begin{equation} mathsf{H}_{boldsymbol{alpha}}equivleft{boldsymbol{xi}in mathbb{C}^{boldsymbol{r}}: boldsymbol{xi}= sum_{imath=1}^{imath=r}xi_{imath}mathbf{a}_{boldsymbol{imath}} =sum_{imath=1}^{imath=r}xi_{imath}boldsymbol{vert} j_{boldsymbol{alpha}},,m^{boldsymbol{alpha}}_{boldsymbol{imath}} boldsymbol{rangle_{boldsymbol{alpha}}} right}, quad r=2j_{alpha}+1 tag{04} end{equation} with basis $lbracemathbf{a}_{imath},imath=1,2,cdots,rrbrace$ and a linear transformation $:mathrm{A}:$ in this space represented relatively to the fore mentioned basis by the $rtimes r$ matrix
begin{equation} mathrm{A}=lbrace a_{imath rho}rbrace = begin{bmatrix} a_{11} & a_{12} & cdots & a_{1 rho} & cdots & a_{1r} a_{21} & a_{22} & cdots & a_{2 rho} & cdots & a_{2r} vdots & vdots & ddots & vdots & ddots & vdots a_{imath 1} & a_{imath 2} & cdots & a_{imath rho} & cdots & a_{imath r} vdots & vdots & ddots & vdots & ddots & vdots a_{r1} & a_{r2} & cdots & a_{r rho} & cdots & a_{rr} end{bmatrix}_{mathbf{a}} tag{32} end{equation} A vector $boldsymbol{xi}$ is transformed to $boldsymbol{xi}^{prime}$ begin{equation} boldsymbol{xi}^{prime} = mathrm{A}boldsymbol{xi}:, qquad boldsymbol{xi} in mathsf{H}_{boldsymbol{alpha}} tag{33} end{equation} and by coordinates begin{equation} xi^{'}_{imath} = sum_{rho=1}^{rho=r}a_{imath rho}xi_{rho} tag{34} end{equation} Respectively, let the $s$-dimensional complex Hilbert space defined by (09) begin{equation} mathsf{H}_{boldsymbol{beta}}equivleft{boldsymbol{eta}in mathbb{C}^{boldsymbol{s}}: boldsymbol{eta}= sum_{jmath=1}^{imath=s}eta_{jmath}mathbf{b}_{boldsymbol{jmath}} =sum_{jmath=1}^{jmath=s}eta_{jmath}boldsymbol{vert} j_{boldsymbol{beta}},,m^{boldsymbol{beta}}_{boldsymbol{jmath}} boldsymbol{rangle}_{boldsymbol{beta}} right}, quad s=2j_{beta}+1 tag{09} end{equation} with basis $lbracemathbf{b}_{jmath},jmath=1,2,cdots,srbrace$ and a linear transformation $:mathrm{B}:$ in this space represented relatively to fore mentioned basis by the $stimes s$ matrix

begin{equation} mathrm{B}=lbrace b_{jmath sigma}rbrace = begin{bmatrix} b_{11} & b_{12} & cdots & b_{1 sigma} & cdots & b_{1s} b_{21} & b_{22} & cdots & b_{2 sigma} & cdots & b_{2s} vdots & vdots & ddots & vdots & ddots & vdots b_{jmath 1} & b_{jmath 2} & cdots & b_{jmath sigma} & cdots & b_{jmath s} vdots & vdots & ddots & vdots & ddots & vdots b_{s1} & b_{s2} & cdots & b_{s sigma} & cdots & b_{ss} end{bmatrix}_{mathbf{b}} tag{35} end{equation} A vector $boldsymbol{eta}$ is transformed to $boldsymbol{eta}^{prime}$ begin{equation} boldsymbol{eta}^{prime} = mathrm{B}boldsymbol{eta}:, qquad boldsymbol{eta} in mathsf{H}_{beta} tag{36} end{equation} and by coordinates begin{equation} eta^{'}_{jmath} = sum_{sigma=1}^{sigma=s}b_{jmath sigma}eta_{sigma} tag{37} end{equation} Now, we construct the product states of initial and transformed states begin{equation} boldsymbol{chi} equiv boldsymbol{xi} boldsymbol{otimes} boldsymbol{eta} tag{38} end{equation} begin{equation} boldsymbol{chi}^{prime} equiv boldsymbol{xi}^{prime} boldsymbol{otimes} boldsymbol{eta}^{prime} = left( mathrm{A}boldsymbol{xi}right) boldsymbol{otimes}left( mathrm{B}boldsymbol{eta}right) tag{39} end{equation} It's reasonable to think that the product state $:boldsymbol{chi}^{prime}:$ comes from $:boldsymbol{chi}:$ by a linear transformation $:mathrm{C}:$ in the $:rcdot s:$-dimensional product space, as defined by (23), that is the complex Hilbert space begin{equation} mathsf{H}_{f}equiv lbrace ; boldsymbol{chi} ; : ;boldsymbol{chi}=sum_{k=1}^{k=rs}chi_{k}mathbf{e}_{k},;chi_{k} in mathbb{C} rbrace tag{23} end{equation} where the basis $:lbracemathbf{e}_{k}, k=1,2,cdots,rsrbrace$ is constructed from the $mathbf{a}$'s and $mathbf{b}$'s as in equations (16) begin{equation} mathbf{e}_{k} equiv mathbf{a}_{imath}boldsymbol{otimes} mathbf{b}_{jmath}: = boldsymbol{vert} j_{boldsymbol{alpha}},,j_{boldsymbol{alpha}}!-!imath!+!1 boldsymbol{rangle}_{boldsymbol{alpha}}boldsymbol{otimes} boldsymbol{vert} j_{boldsymbol{beta}},,j_{boldsymbol{beta}}!-!jmath !+!1boldsymbol{rangle}_{boldsymbol{beta}} tag{16} end{equation} Indeed, from (39) begin{equation} chi^{prime}_{k} =xi^{prime}_{imath}eta^{prime}_{jmath} = left(sum_{rho=1}^{rho=r}a_{imath rho}xi_{rho}right) left( sum_{sigma=1}^{sigma=s} b_{jmath sigma}eta_{sigma}right)= left( sum_{rho,sigma=1,1}^{rho,sigma=r,s}a_{imath rho} b_{jmath sigma}right) xi_{rho}eta_{sigma} tag{40} end{equation} so making the substitutions of double indices with single ones as established by equations (20)

begin{align} k & : longleftrightarrow : (imath,jmath) tag{41a} ell & : longleftrightarrow : (rho,sigma) tag{41b} chi^{prime}_{k} & :longleftrightarrow : : : xi^{prime}_{imath}eta^{prime}_{jmath} tag{41c} chi_{ell} & :longleftrightarrow : : : xi_{rho}eta_{sigma} tag{41d} end{align} and defining begin{equation} c_{k ell} = a_{imath rho} b_{jmath sigma} tag{42} end{equation} equation (40) yields begin{equation} chi^{prime}_{k} = sum_{ell=1}^{ell=rs}c_{k ell}chi_{ell} tag{43} end{equation} or begin{equation} boldsymbol{chi}^{prime} equiv boldsymbol{xi}^{prime} boldsymbol{otimes} boldsymbol{eta}^{prime} = left( mathrm{A}boldsymbol{xi}right) boldsymbol{otimes}left( mathrm{B}boldsymbol{eta}right)= mathrm{C}left( boldsymbol{xi} boldsymbol{otimes} boldsymbol{eta}right)= mathrm{C}boldsymbol{chi} tag{44} end{equation} The operator $:mathrm{C}:$ is called the product operator of $:mathrm{A}:$ and $:mathrm{B}:$ begin{equation} mathrm{C} equiv mathrm{A}boldsymbol{otimes} mathrm{B} tag{45} end{equation} and its representation relatively to basis $:lbracemathbf{e}_{k}, k=1,2,cdots,rsrbrace$ is the $:rs times rs:$ matrix begin{equation} mathrm{C}= begin{bmatrix} c_{11} & c_{12} & cdots & c_{1 ell} & cdots & c_{1(rs)} c_{21} & c_{22} & cdots & c_{2 ell} & cdots & c_{2(rs)} vdots & vdots & ddots & vdots & ddots & vdots c_{k 1} & c_{k 2} & cdots & c_{k ell} & cdots & c_{k(rs)} vdots & vdots & ddots & vdots & ddots & vdots c_{(rs)1} & c_{(rs)2} & cdots & c_{(rs)ell} & cdots & c_{(rs)(rs)} end{bmatrix}_{mathbf{e}} tag{46} end{equation} its elements $:c_{k ell}:$ given by equation (42).

Now, if we keep the ordering as in equations (20) then $:c_{11}=a_{11} b_{11},:c_{12}=a_{11} b_{12},:cdots, :c_{1s}=a_{11}b_{1s},:c_{1(s+1)}=a_{12}b_{11},:cdots:$ and so given the matrix representations of $:mathrm{A}:$ and $:mathrm{B}:$, equations (32) and (35) respectively, we have the following $:r times r:$ square $:s times s:$ blocks for the matrix representation of $:mathrm{C}:$ begin{equation} mathrm{C}=mathrm{A}boldsymbol{otimes} mathrm{B} =lbrace c_{k ell}rbrace = begin{bmatrix} a_{11}mathrm{B} & a_{12}mathrm{B} & cdots & a_{1 rho}mathrm{B} & cdots & a_{1r}mathrm{B} a_{21}mathrm{B} & a_{22}mathrm{B} & cdots & a_{2 rho}mathrm{B} & cdots & a_{2r}mathrm{B} vdots & vdots & ddots & vdots & ddots & vdots a_{imath 1}mathrm{B} & a_{imath 2}mathrm{B} & cdots & a_{imath rho}mathrm{B} & cdots & a_{imath r}mathrm{B} vdots & vdots & ddots & vdots & ddots & vdots a_{r1}mathrm{B} & a_{r2}mathrm{B} & cdots & a_{r rho}mathrm{B} & cdots & a_{rr}mathrm{B} end{bmatrix}_{mathbf{e}} tag{47} end{equation} The definition of the product transformation is consistent with the composition of transformations, that is if $:mathrm{A}_{1},:mathrm{A}_{2}:$ and $:mathrm{B}_{1},:mathrm{B}_{2}:$ are transformations in spaces $:mathsf{H}_{boldsymbol{alpha}}:$ and $:mathsf{H}_{boldsymbol{beta}}:$ respectively, then : begin{equation} left(mathrm{A}_{2} boldsymbol{otimes} mathrm{B}_{2}right)left(mathrm{A}_{1} boldsymbol{otimes} mathrm{B}_{1}right)= left(mathrm{A}_{2}mathrm{A}_{1}right) boldsymbol{otimes} left( mathrm{B}_{2}mathrm{B}_{1}right) tag{48} end{equation} since for any $:boldsymbol{xi}in mathsf{H}_{boldsymbol{alpha}}:$ and $:boldsymbol{eta}in mathsf{H}_{boldsymbol{beta}}:$ begin{align} left(mathrm{A}_{2} boldsymbol{otimes} mathrm{B}_{2}right)left(mathrm{A}_{1} boldsymbol{otimes} mathrm{B}_{1}right)left(boldsymbol{xi} boldsymbol{otimes} boldsymbol{eta}right) & = left(mathrm{A}_{2} boldsymbol{otimes} mathrm{B}_{2}right)bigl[left( mathrm{A}_{1}boldsymbol{xi}right) boldsymbol{otimes} left(mathrm{B}_{1} boldsymbol{eta}right)bigr] nonumber & = bigl[mathrm{A}_{2}left(mathrm{A}_{1}boldsymbol{xi}right)bigr] boldsymbol{otimes} left[mathrm{B}_{2}left(mathrm{B}_{1} boldsymbol{eta}right)right]=left(mathrm{A}_{2}mathrm{A}_{1}boldsymbol{xi}right) boldsymbol{otimes} left(mathrm{B}_{2}mathrm{B}_{1}boldsymbol{eta}right) nonumber & = bigl[left(mathrm{A}_{2}mathrm{A}_{1}right) boldsymbol{otimes} left( mathrm{B}_{2}mathrm{B}_{1}right)bigr]left(boldsymbol{xi} boldsymbol{otimes} boldsymbol{eta}right) tag{49} end{align}

A linear transformation $:mathrm{C}:$ in the product space $:mathsf{H}_{boldsymbol{f}}=mathsf{H}_{boldsymbol{alpha}}boldsymbol{otimes}mathsf{H}_{boldsymbol{beta}}:$ is not necessarily the product $:mathrm{A} boldsymbol{otimes} mathrm{B}:$ of linear transformations on the components spaces $:mathsf{H}_{alpha}:$ and $:mathsf{H}_{beta}:$ respectively. To include all possible transformations on the product space $:mathsf{H}_{f}:$ we think that any $:mathrm{A}:$ on the $r$-dimensional space $:mathsf{H}_{boldsymbol{alpha}}:$ can be embed in a product space $:mathsf{H}_{boldsymbol{alpha}}boldsymbol{otimes}mathsf{S}:$, where $:mathsf{S}:$ any $s$-dimensional space, simply by its product with the identity $:mathrm{I}_{mathsf{S}}:$ on $:mathsf{S}:$, yielding an one-to-one correspondence begin{equation} mathrm{A} ;text{ on }; mathsf{H}_{boldsymbol{alpha}} boldsymbol{longleftrightarrow} left(mathrm{A} boldsymbol{otimes} mathrm{I}_{mathsf{S}}right) ;text{ on }; mathsf{H}_{boldsymbol{alpha}}boldsymbol{otimes}mathsf{S} tag{50} end{equation}

Similarly, any $:mathrm{B}:$ on the $s$-dimensional space $:mathsf{H}_{boldsymbol{beta}}:$ can be embed in a product space $:mathsf{R} boldsymbol{otimes}mathsf{H}_{boldsymbol{beta}}:$, where $:mathsf{R}:$ any $r$-dimensional space, by its product with the identity $:mathrm{I}_{mathsf{R}}:$ on $:mathsf{R}:$, yielding an one-to-one correspondence

begin{equation} mathrm{B} ;text{ on }; mathsf{H}_{boldsymbol{beta}} boldsymbol{longleftrightarrow} left(mathrm{I}_{mathsf{R}} boldsymbol{otimes} mathrm{B}right) ;text{ on }; mathsf{R}boldsymbol{otimes} mathsf{H}_{boldsymbol{beta}} tag{51} end{equation} Note that if the matrix representation of $:mathrm{A}:$ relatively to a basis $lbracemathbf{a}_{imath},imath=1,2,cdots,rrbrace$ is as in (32)
begin{equation} mathrm{A}=lbrace a_{imath rho}rbrace = begin{bmatrix} a_{11} & a_{12} & cdots & a_{1 rho} & cdots & a_{1r} a_{21} & a_{22} & cdots & a_{2 rho} & cdots & a_{2r} vdots & vdots & ddots & vdots & ddots & vdots a_{imath 1} & a_{imath 2} & cdots & a_{imath rho} & cdots & a_{imath r} vdots & vdots & ddots & vdots & ddots & vdots a_{r1} & a_{r2} & cdots & a_{r rho} & cdots & a_{rr} end{bmatrix}_{mathbf{a}} tag{32} end{equation} then from (47) we have the following representation by $:r times r :$ blocks, each block with $:s times s :$ elements : begin{equation} mathrm{A} boldsymbol{otimes}mathrm{I}_{mathsf{S}}= begin{bmatrix} a_{11}mathrm{I}_{mathsf{S}} & a_{12}mathrm{I}_{mathsf{S}} & cdots & a_{1 rho}mathrm{I}_{mathsf{S}}& cdots & a_{1r}mathrm{I}_{mathsf{S}} a_{21}mathrm{I}_{mathsf{S}} & a_{22}mathrm{I}_{mathsf{S}} & cdots & a_{2 rho}mathrm{I}_{mathsf{S}}& cdots & a_{2r}mathrm{I}_{mathsf{S}} vdots & vdots & ddots & vdots & ddots & vdots a_{imath 1}mathrm{I}_{mathsf{S}} & a_{imath 2}mathrm{I}_{mathsf{S}} & cdots & a_{imath rho}mathrm{I}_{mathsf{S}}& cdots & a_{imath r}mathrm{I}_{mathsf{S}} vdots & vdots & ddots & vdots & ddots & vdots a_{r1}mathrm{I}_{S} & a_{r2}mathrm{I}_{S} & cdots & a_{r rho}mathrm{I}_{S} & cdots & a_{rr}mathrm{I}_{S} end{bmatrix} tag{52} end{equation} while if the matrix representation of $:mathrm{B}:$ relatively to a basis $lbracemathbf{b}_{jmath},jmath=1,2,cdots,srbrace$ is as in (35) begin{equation} mathrm{B}=lbrace b_{jmath sigma}rbrace = begin{bmatrix} b_{11} & b_{12} & cdots & b_{1 sigma} & cdots & b_{1s} b_{21} & b_{22} & cdots & b_{2 sigma} & cdots & b_{2s} vdots & vdots & ddots & vdots & ddots & vdots b_{jmath 1} & b_{jmath 2} & cdots & b_{jmath sigma} & cdots & b_{jmath s} vdots & vdots & ddots & vdots & ddots & vdots b_{s1} & b_{s2} & cdots & b_{s sigma} & cdots & b_{ss} end{bmatrix}_{mathbf{b}} tag{35} end{equation} then from (47) we have the following $:r times r :$ diagonal representation with all diagonal blocks equal to $:mathrm{B}:$ :
begin{equation} mathrm{I}_{mathsf{R}} boldsymbol{otimes} mathrm{B} = begin{bmatrix} mathrm{B} & mathrm{O}_{mathsf{S}} & cdots & mathrm{O}_{mathsf{S}}& cdots & mathrm{O}_{mathsf{S}} mathrm{O}_{mathsf{S}} & mathrm{B} & cdots & mathrm{O}_{mathsf{S}} & cdots & mathrm{O}_{mathsf{S}} vdots & vdots & ddots & vdots & ddots & vdots vdots & vdots & ddots & vdots & ddots & vdots mathrm{O}_{mathsf{S}} & mathrm{O}_{mathsf{S}} & cdots & mathrm{O}_{mathsf{S}} & cdots & mathrm{B} end{bmatrix} tag{53} end{equation} where $:mathrm{O}_{mathsf{S}}:$ the $: stimes s :$ null matrix.

Now, if $:mathrm{A}:$ and $:mathrm{B}:$ are transformations on spaces $:mathsf{H}_{boldsymbol{alpha}}:$ and $:mathsf{H}_{boldsymbol{beta}}:$ respectively then $:left(mathrm{A} boldsymbol{otimes} mathrm{I}_{boldsymbol{beta}}right):$ and $:left(mathrm{I}_{boldsymbol{alpha}} boldsymbol{otimes} mathrm{B}right):$ are transformations on the product space $:mathsf{H}_{boldsymbol{f}}=mathsf{H}_{boldsymbol{alpha}}boldsymbol{otimes}mathsf{H}_{boldsymbol{beta}}:$, moreover if we keep the two systems independent they commute and by (48) begin{equation} left(mathrm{A}boldsymbol{otimes}mathrm{I}_{boldsymbol{beta}}right) left(mathrm{I}_{boldsymbol{alpha}} boldsymbol{otimes} mathrm{B}right)= mathrm{A}boldsymbol{otimes} mathrm{B} =left(mathrm{I}_{boldsymbol{alpha}}boldsymbol{otimes} mathrm{B}right)left(mathrm{A} boldsymbol{otimes} mathrm{I}_{boldsymbol{beta}}right) tag{54} end{equation} Note that if in above equation we insert $:mathrm{B}=mathrm{I}_{boldsymbol{beta}}:$ then there is no inconsistency in the resulting equation begin{equation} left(mathrm{A}boldsymbol{otimes} mathrm{I}_{boldsymbol{beta}}right) left(mathrm{I}_{boldsymbol{alpha}} boldsymbol{otimes} mathrm{I}_{boldsymbol{beta}} right)= mathrm{A}times mathrm{I}_{boldsymbol{beta}} =left(mathrm{I}_{alpha}boldsymbol{otimes} mathrm{I}_{boldsymbol{beta}} right)left(mathrm{A} boldsymbol{otimes} mathrm{I}_{boldsymbol{beta}} right) tag{55} end{equation} since begin{equation} mathrm{I}_{boldsymbol{alpha}} boldsymbol{otimes}mathrm{I}_{boldsymbol{beta}}equiv mathrm{I}_{boldsymbol{f}} tag{56} end{equation} where $:mathrm{I}_{boldsymbol{f}}:$ the identity in $:mathsf{H}_{boldsymbol{f}}=mathsf{H}_{boldsymbol{alpha}} boldsymbol{otimes}mathsf{H}_{boldsymbol{beta}}:$.

By the same reasoning, inserting in (54) $:mathrm{A}=mathrm{I}_{boldsymbol{alpha}}:$ there is no inconsistency in the resulting equation begin{equation} left(mathrm{I}_{boldsymbol{alpha}}boldsymbol{otimes}mathrm{I}_{boldsymbol{beta}}right) left(mathrm{I}_{boldsymbol{alpha}} boldsymbol{otimes} mathrm{B}right)= mathrm{I}_{boldsymbol{alpha}}boldsymbol{otimes} mathrm{B} =left(mathrm{I}_{boldsymbol{alpha}}boldsymbol{otimes} mathrm{B}right)left(mathrm{I}_{boldsymbol{alpha}} boldsymbol{otimes} mathrm{I}_{boldsymbol{beta}}right) tag{57} end{equation} The linear space of linear transformations on the product $:mathsf{H}_{boldsymbol{f}}=mathsf{H}_{boldsymbol{alpha}} boldsymbol{otimes}mathsf{H}_{boldsymbol{beta}}:$ is the set of all linear combinations $:mathrm{C}:$ of product transformations begin{equation} mathrm{C} = sum_{imath,jmath}c_{imath jmath} left(mathrm{A}_{imath}boldsymbol{otimes} mathrm{B}_{jmath}right),, qquad c_{imath jmath} in mathbb{C} tag{58} end{equation} As a general remark : the operation $:left(boldsymbol{otimes}right):$ combines two entities $:mathcal{M}_{boldsymbol{alpha}},:mathcal{M}_{boldsymbol{beta}}$ of the same kind ($:mathcal{M}_{boldsymbol{imath}}:$=complex vector or linear space or linear transformation) of dimensionality, say $:r:$ and $:s:$ respectively, into a new entity $:mathcal{M}=mathcal{M}_{boldsymbol{alpha}}boldsymbol{otimes}mathcal{M}_{boldsymbol{beta}}$ of dimension $:rcdot s $.

Now, differentiating (21) we have begin{equation} mathrm{d}chi_{k}=mathrm{d}left(xi_{imath}cdot eta_{jmath}right)=left(mathrm{d}xi_{imath}right)cdoteta_{jmath}+xi_{imath}cdotleft(mathrm{d}eta_{jmath}right) tag{59} end{equation} So, if in space $:mathsf{H}_{boldsymbol{alpha}}:$ the state $:boldsymbol{xi}:$ undergoes an infinitesimal change $: mathcal{D}_{boldsymbol{alpha}} boldsymbol{xi:}$ and in space $:mathsf{H}_{boldsymbol{beta}}:$ the state $:boldsymbol{eta:}$ undergoes an infinitesimal change $: mathcal{D}_{boldsymbol{beta}} boldsymbol{eta:}$, then in space $:mathsf{H}_{boldsymbol{f}}:$ the product state $:boldsymbol{chi}:$ undergoes an infinitesimal change $: mathcal{D}_{boldsymbol{f}} boldsymbol{chi:}$ where

begin{equation} mathcal{D}_{boldsymbol{f}}boldsymbol{chi} =mathcal{D}_{boldsymbol{f}}left(boldsymbol{xi} boldsymbol{otimes} boldsymbol{eta}right)= left(mathcal{D}_{alpha}boldsymbol{xi}right) boldsymbol{otimes} boldsymbol{eta}+boldsymbol{xi} boldsymbol{otimes} left(mathcal{D}_{beta}boldsymbol{eta}right) tag{60} end{equation} that is begin{equation} mathcal{D}_{boldsymbol{f}}left(boldsymbol{xi}boldsymbol{otimes}boldsymbol{eta}right)= bigl[mathcal{D}_{boldsymbol{alpha}}boldsymbol{otimes}mathrm{I}_{boldsymbol{beta}}+mathrm{I}_{boldsymbol{alpha}}boldsymbol{otimes} mathcal{D}_{boldsymbol{beta}}bigr]left( boldsymbol{xi} boldsymbol{otimes} boldsymbol{eta} right) tag{61} end{equation}
and finally begin{equation} bbox[#E6E6E6,8px]{mathcal{D}_{boldsymbol{f}}= left(mathcal{D}_{boldsymbol{alpha}}boldsymbol{otimes}mathrm{I}_{boldsymbol{beta}}right)+left(mathrm{I}_{boldsymbol{alpha}}boldsymbol{otimes} mathcal{D}_{boldsymbol{beta}}right)} tag{62} end{equation}

(to be continued in FOURTH___ANSWER)

Answered by Frobenius on April 8, 2021

F O U R T H___ A N S W E R

(upvote or downvote my 1rst answer only. My 2nd,3rd,4th and 5th answers are addenda to it)

(continued from T H I R D___ A N S W E R )

SECTION C : Angular Momentum Coupling and Product Transformations

Let again the two systems $alpha$ and $beta$ with angular momentum $j_{alpha}$ and $j_{beta}$ respectively, independent between each other and living in the real space $;mathbb{R}^{3}$. Suppose also that both $j_{alpha}$ and $j_{beta}$ are integers corresponding to orbital angular momentum.

Now, let an infinitesimal rotation by angle $;delta theta;$ around an axis with unit vector $;boldsymbol{n}=left(n_{1},n_{2},n_{3}right);$. Since the $;boldsymbol{n}-$component of orbital angular momentum is the generator of rotations around this axis, the infinitesimal changes of states $;boldsymbol{xi}inmathsf{H}_{boldsymbol{alpha}};$ and $;boldsymbol{eta}inmathsf{H}_{boldsymbol{beta}};$ due to this infinitesimal rotation are begin{align} delta boldsymbol{xi} & = i, deltatheta ,J^{boldsymbol{alpha}}_{boldsymbol{n}}, boldsymbol{xi} tag{63a} delta boldsymbol{eta} & = i, deltatheta , J^{boldsymbol{beta}}_{boldsymbol{n}}, boldsymbol{eta} tag{63b} end{align} where for the $;boldsymbol{n}-$components of the vector operators we have begin{align} J^{boldsymbol{alpha}}_{boldsymbol{n}} & = boldsymbol{n}boldsymbol{cdot}mathbf{J^{boldsymbol{alpha}}}=n_{1}J^{boldsymbol{alpha}}_{1}+n_{2}J^{boldsymbol{alpha}}_{2}+n_{3}J^{boldsymbol{alpha}}_{3} tag{64a} J^{boldsymbol{beta}}_{boldsymbol{n}} & = boldsymbol{n}boldsymbol{cdot}mathbf{J^{boldsymbol{beta}}}=n_{1}J^{boldsymbol{beta}}_{1}+n_{2}J^{boldsymbol{beta}}_{2}+n_{3}J^{boldsymbol{beta}}_{3} tag{64b} end{align} If we intend to construct a consistent angular momentum operator $;mathbf{J};$ of the coupled system $;f;$ in the product space $:mathsf{H}_{boldsymbol{f}}=mathsf{H}_{boldsymbol{alpha}}boldsymbol{otimes}mathsf{H}_{boldsymbol{beta}}:$, then the infinitesimal change of the product state $left(boldsymbol{xi} boldsymbol{otimes} boldsymbol{eta}right)$ must be begin{equation} delta left(boldsymbol{xi} boldsymbol{otimes} boldsymbol{eta}right) = i, deltatheta ,J_{boldsymbol{n}},left(boldsymbol{xi} boldsymbol{otimes} boldsymbol{eta}right) tag{65} end{equation} where, as in equations (64) begin{equation} J_{boldsymbol{n}} = boldsymbol{n}boldsymbol{cdot}mathbf{J}=n_{1}J_{1}+n_{2}J_{2}+n_{3}J_{3} tag{66} end{equation} So, replacing in equation (62), which is repeated here for convenience
begin{equation} bbox[#E6E6E6,8px]{mathcal{D}_{boldsymbol{f}}= left(mathcal{D}_{boldsymbol{alpha}}boldsymbol{otimes}mathrm{I}_{boldsymbol{beta}}right)+left(mathrm{I}_{boldsymbol{alpha}}boldsymbol{otimes} mathcal{D}_{boldsymbol{beta}}right)} tag{62} end{equation} the $;mathcal{D},$s with the following expressions of $;J_{boldsymbol{n}},$s begin{align} mathcal{D}_{boldsymbol{alpha}} & = i, deltatheta , J^{boldsymbol{alpha}}_{boldsymbol{n}} tag{67a} mathcal{D}_{boldsymbol{beta}} & = i, deltatheta , J^{boldsymbol{beta}}_{boldsymbol{n}} tag{67b} mathcal{D}_{boldsymbol{f}} & = i, deltatheta , J_{boldsymbol{n}} tag{67c} end{align} we have begin{equation} bbox[#FFFF88,5px,border:1px solid black]{J_{boldsymbol{n}}= Bigl(J^{boldsymbol{alpha}}_{boldsymbol{n}}boldsymbol{otimes}mathrm{I}_{boldsymbol{beta} }Bigr)+left(mathrm{I}_{boldsymbol{alpha}}boldsymbol{otimes} J^{boldsymbol{beta}}_{boldsymbol{n}}right)} tag{68} end{equation} Equation (68) is of fundamental importance and the starting point for coupling two angular momenta.

Now, we suppose that equation (68) is valid for any angular momenta $j_{alpha}$ and $j_{beta}$, orbital or spin, integer or half-integer.

We write above equation for the three axes of a coordinate system begin{align} J_{1} & = Bigl(J^{boldsymbol{alpha}}_{1}boldsymbol{otimes}mathrm{I}_{boldsymbol{beta}}Bigr)+Bigl(mathrm{I}_{boldsymbol{alpha}}boldsymbol{otimes} J^{boldsymbol{beta}}_{1}Bigr) tag{69a} J_{2} & = Bigl(J^{boldsymbol{alpha}}_{2}boldsymbol{otimes}mathrm{I}_{boldsymbol{beta}}Bigr)+Bigl(mathrm{I}_{boldsymbol{alpha}}boldsymbol{otimes} J^{boldsymbol{beta}}_{2}Bigr) tag{69b} J_{3} & = Bigl(J^{boldsymbol{alpha}}_{3}boldsymbol{otimes}mathrm{I}_{boldsymbol{beta}}Bigr)+Bigl(mathrm{I}_{boldsymbol{alpha}}boldsymbol{otimes} J^{boldsymbol{beta}}_{3}Bigr) tag{69c} end{align} formally expressed as begin{equation} mathbf{J}= Bigl(mathbf{J}^{boldsymbol{alpha}}boldsymbol{otimes}mathrm{I}_{boldsymbol{beta}}Bigr)+Bigl(mathrm{I}_{boldsymbol{alpha}}boldsymbol{otimes} mathbf{J}^{boldsymbol{beta}}Bigr) tag{70} end{equation}

Now we must check if this so constructed quantity $:mathbf{J}=left(J_{1},J_{2},J_{3}right):$ of the composite system is a consistent angular momentum and the criterion for this is the validation of the equation begin{equation} mathbf{J}boldsymbol{times}mathbf{J}= i , mathbf{J} tag{71} end{equation} or by components begin{align} J_{boldsymbol{2}}J_{boldsymbol{3}}-J_{boldsymbol{3}}J_{boldsymbol{2}} & = i , J_{boldsymbol{1}} tag{72a} J_{boldsymbol{3}}J_{boldsymbol{1}}-J_{boldsymbol{1}}J_{boldsymbol{3}} & = i , J_{boldsymbol{2}} tag{72b} J_{boldsymbol{1}}J_{boldsymbol{2}}-J_{boldsymbol{2}}J_{boldsymbol{1}} & = i , J_{boldsymbol{3}} tag{72c} end{align} To prove equations (72), let find a general expression for $:J_{boldsymbol{n}}J_{boldsymbol{k}}:$, that is the product of the components of $:mathbf{J}:$ parallel to the unit vectors $:mathbf{n}:$ and $:mathbf{k}:$ respectively. From equation (68) and the multiplication rule, equation (48), we have

begin{align} J_{boldsymbol{n}}J_{boldsymbol{k}} & = Bigl[Bigl( J^{boldsymbol{alpha}}_{boldsymbol{n}}boldsymbol{otimes}mathrm{I}_{boldsymbol {beta}}Bigr)+ Bigl(mathrm{I}_{boldsymbol {alpha}} boldsymbol{otimes}J^{boldsymbol{beta}}_{boldsymbol{n}}Bigr)Bigr] left[Bigl( J^{boldsymbol{alpha}}_{boldsymbol{k}}boldsymbol{otimes}mathrm{I}_{boldsymbol {beta}}Bigr)+ left(mathrm{I}_{boldsymbol {alpha}} boldsymbol{otimes}J^{boldsymbol{beta}}_{boldsymbol{k}}right)right] nonumber & =Bigl( J^{boldsymbol{alpha}}_{boldsymbol{n}}boldsymbol{otimes}mathrm{I}_{boldsymbol {beta}}Bigr)Bigl( J^{boldsymbol{alpha}}_{boldsymbol{k}}boldsymbol{otimes}mathrm{I}_{boldsymbol {beta}}Bigr)+Bigl(mathrm{I}_{boldsymbol {alpha}} boldsymbol{otimes}J^{boldsymbol{beta}}_{boldsymbol{n}}Bigr)left(mathrm{I}_{boldsymbol {alpha}} boldsymbol{otimes}J^{boldsymbol{beta}}_{boldsymbol{k}}right) nonumber & + Bigl( J^{boldsymbol{alpha}}_{boldsymbol{n}}boldsymbol{otimes}mathrm{I}_{boldsymbol {beta}}Bigr)left(mathrm{I}_{boldsymbol {alpha}} boldsymbol{otimes}J^{boldsymbol{beta}}_{boldsymbol{k}}right) +Bigl(mathrm{I}_{boldsymbol {alpha}} boldsymbol{otimes}J^{boldsymbol{beta}}_{boldsymbol{n}}Bigr)Bigl( J^{boldsymbol{alpha}}_{boldsymbol{k}}boldsymbol{otimes}mathrm{I}_{boldsymbol {beta}}Bigr) tag{73} end{align} so begin{equation} J_{boldsymbol{n}}J_{boldsymbol{k}} = Bigl[Bigl( J^{boldsymbol{alpha}}_{boldsymbol{n}}J^{boldsymbol{alpha}}_{boldsymbol{k}}Bigr)boldsymbol{otimes}mathrm{I}_{boldsymbol {beta}}Bigr]+Bigl[mathrm{I}_{boldsymbol {alpha}}boldsymbol{otimes}Bigl( J^{boldsymbol{beta}}_{boldsymbol{n}}J^{boldsymbol{beta}}_{boldsymbol{k}}Bigr)Bigr] +Bigl( J^{boldsymbol{alpha}}_{boldsymbol{n}}boldsymbol{otimes}J^{boldsymbol{beta}}_{boldsymbol{k}}Bigr) +Bigl( J^{boldsymbol{alpha}}_{boldsymbol{k}}boldsymbol{otimes}J^{boldsymbol{beta}}_{boldsymbol{n}}Bigr) tag{74} end{equation} Permutation of $:n:$ and $:k:$ yields begin{equation} J_{boldsymbol{k}}J_{boldsymbol{n}} = Bigl[Bigl( J^{boldsymbol{alpha}}_{boldsymbol{k}}J^{boldsymbol{alpha}}_{boldsymbol{n}}Bigr)boldsymbol{otimes}mathrm{I}_{boldsymbol {beta}}Bigr]+Bigl[mathrm{I}_{boldsymbol {alpha}}boldsymbol{otimes}Bigl( J^{boldsymbol{beta}}_{boldsymbol{k}}J^{boldsymbol{beta}}_{boldsymbol{n}}Bigr)Bigr] +Bigl( J^{boldsymbol{alpha}}_{boldsymbol{k}}boldsymbol{otimes}J^{boldsymbol{beta}}_{boldsymbol{n}}Bigr) +Bigl( J^{boldsymbol{alpha}}_{boldsymbol{n}}boldsymbol{otimes}J^{boldsymbol{beta}}_{boldsymbol{k}}Bigr) tag{75} end{equation} Subtracting (75) from (74) begin{equation} J_{boldsymbol{n}}J_{boldsymbol{k}}-J_{boldsymbol{k}}J_{boldsymbol{n}}= Bigl[Bigl( J^{boldsymbol{alpha}}_{boldsymbol{n}}J^{boldsymbol{alpha}}_{boldsymbol{k}}-J^{boldsymbol{alpha}}_{boldsymbol{k}}J^{boldsymbol{alpha}}_{boldsymbol{n}}Bigr)boldsymbol{otimes}mathrm{I}_{boldsymbol {beta}}Bigr]+Bigl[mathrm{I}_{boldsymbol {alpha}}boldsymbol{otimes}Bigl(J^{boldsymbol{beta}}_{boldsymbol{n}}J^{boldsymbol{beta}}_{boldsymbol{k}}- J^{boldsymbol{beta}}_{boldsymbol{k}}J^{boldsymbol{beta}}_{boldsymbol{n}}Bigr)Bigr] tag{76} end{equation} For $:n=1:$ and $:k=2:$ the general equation (76) gives begin{align} J_{boldsymbol{1}}J_{boldsymbol{2}}-J_{boldsymbol{2}}J_{boldsymbol{1}} & = Bigl[overbrace{Bigl( J^{boldsymbol{alpha}}_{boldsymbol{1}}J^{boldsymbol{alpha}}_{boldsymbol{2}}-J^{boldsymbol{alpha}}_{boldsymbol{2}}J^{boldsymbol{alpha}}_{boldsymbol{1}}Bigr)}^{i ,J^{boldsymbol{alpha}}_{boldsymbol{3}} }boldsymbol{otimes}mathrm{I}_{boldsymbol {beta}}Bigr]+Bigl[mathrm{I}_{boldsymbol {alpha}}boldsymbol{otimes} overbrace{Bigl(J^{boldsymbol{beta}}_{boldsymbol{1}}J^{boldsymbol{beta}}_{boldsymbol{2}}- J^{boldsymbol{beta}}_{boldsymbol{2}}J^{boldsymbol{beta}}_{boldsymbol{1}}Bigr)}^{i ,J^{boldsymbol{beta}}_{boldsymbol{3}}}Bigr] nonumber & = Bigl[Bigl(i ,J^{boldsymbol{alpha}}_{boldsymbol{3}}Bigr)boldsymbol{otimes}mathrm{I}_{boldsymbol{beta}}Bigr] +Bigl[mathrm{I}_{boldsymbol{alpha}}boldsymbol{otimes}Bigl(i,J^{boldsymbol{beta}}_{boldsymbol{3}}Bigr)Bigr] nonumber & = i,Bigl[Bigl(J^{boldsymbol{alpha}}_{boldsymbol{3}}boldsymbol{otimes}mathrm{I}_{boldsymbol{beta}}Bigr) +Bigl(mathrm{I}_{boldsymbol{alpha}}boldsymbol{otimes}J^{boldsymbol{beta}}_{boldsymbol{3}}Bigr)Bigr] nonumber & = i , J_{boldsymbol{3}} tag{77} end{align} so proving (72c). By cyclic permutation of the indices, (72a) and (72b) are proved too.

For the treatment of the angular momentum we make use of equation (69c), repeated here for convenience: begin{equation} J_{3} = Bigl(J^{boldsymbol{alpha}}_{3}boldsymbol{otimes}mathrm{I}_{boldsymbol{beta}}Bigr)+Bigl(mathrm{I}_{boldsymbol{alpha}}boldsymbol{otimes} J^{boldsymbol{beta}}_{3}Bigr) tag{69c} end{equation} This relation has the advantage that if the matrices representing the components $:J^{boldsymbol{alpha}}_{boldsymbol{3}}:$ and $:J^{boldsymbol{beta}}_{boldsymbol{3}}:$ of the coupled systems are diagonal, then the matrix representing the component $:J_{boldsymbol{3}}:$ of the composite system is diagonal too. Moreover its diagonal elements, that is its eigenvalues, are all possible sums $;left(m^{boldsymbol{alpha}}_{boldsymbol{imath}}+m^{boldsymbol{beta}}_{boldsymbol{jmath}}right) ;$ of the corresponding eigenvalues of its summands. These are the $;left(2j_{alpha}+1right)cdotleft(2j_{beta}+1right);$ combinations of begin{align} m^{boldsymbol{alpha}}_{boldsymbol{imath}} & = j_{alpha},j_{alpha}!!-!!1,j_{alpha}!!-!!2,cdots,-!j_{alpha}!!+!!2,-j_{alpha}!!+!!1,-!j_{alpha} tag{77.1a} m^{boldsymbol{beta}}_{boldsymbol{jmath}} & = j_{beta},j_{beta}!!-!!1,j_{beta}!!-!!2,cdots,-!j_{beta}!!+!!2,-j_{beta}!!+!!1,-!j_{beta} tag{77.1b} end{align}

But for the full treatment of the angular momentum we need the matrix representing the quantity $:mathbf{J}^{boldsymbol{2}}=J^{boldsymbol{2}}_{boldsymbol{1}}+J^{boldsymbol{2}}_{boldsymbol{2}}+J^{boldsymbol{2}}_{boldsymbol{3}}:$ too. We'll find an expression of $:mathbf{J}^{boldsymbol{2}}:$ convenient for the determination of its matrix, which isn't from the beginning diagonal as $:J_{boldsymbol{3}}:$ does.

So, inserting in equation (75) successively the pairs of values $:(n,k)=(1,1):$, $:(n,k)=(2,2):$ and $:(n,k)=(3,3):$ we have respectively begin{align} J_{boldsymbol{1}}^{boldsymbol{2}} & = Bigl[bigl( J^{boldsymbol{alpha}}_{boldsymbol{1}}bigr)^{boldsymbol{2}}boldsymbol{otimes}mathrm{I}_{boldsymbol {beta}}Bigr]+Bigl[mathrm{I}_{boldsymbol {alpha}}boldsymbol{otimes}bigl( J^{boldsymbol{beta}}_{boldsymbol{1}}bigr)^{boldsymbol{2}}Bigr] +2Bigl( J^{boldsymbol{alpha}}_{boldsymbol{1}}boldsymbol{otimes}J^{boldsymbol{beta}}_{boldsymbol{1}}Bigr) tag{78a} J_{boldsymbol{2}}^{boldsymbol{2}} & = Bigl[bigl( J^{boldsymbol{alpha}}_{boldsymbol{2}}bigr)^{boldsymbol{2}}boldsymbol{otimes}mathrm{I}_{boldsymbol {beta}}Bigr]+Bigl[mathrm{I}_{boldsymbol {alpha}}boldsymbol{otimes}bigl( J^{boldsymbol{beta}}_{boldsymbol{2}}bigr)^{boldsymbol{2}}Bigr] +2Bigl( J^{boldsymbol{alpha}}_{boldsymbol{2}}boldsymbol{otimes}J^{boldsymbol{beta}}_{boldsymbol{2}}Bigr) tag{78b} J_{boldsymbol{3}}^{boldsymbol{2}} & = Bigl[bigl( J^{boldsymbol{alpha}}_{boldsymbol{3}}bigr)^{boldsymbol{2}}boldsymbol{otimes}mathrm{I}_{boldsymbol {beta}}Bigr]+Bigl[mathrm{I}_{boldsymbol {alpha}}boldsymbol{otimes}bigl( J^{boldsymbol{beta}}_{boldsymbol{3}}bigr)^{boldsymbol{2}}Bigr] +2Bigl( J^{boldsymbol{alpha}}_{boldsymbol{3}}boldsymbol{otimes}J^{boldsymbol{beta}}_{boldsymbol{3}}Bigr) tag{78c} end{align} Having in mind that begin{align} bigl(mathbf{J}^{boldsymbol{alpha}}bigr)^{boldsymbol{2}} & =bigl( J^{boldsymbol{alpha}}_{boldsymbol{1}}bigr)^{boldsymbol{2}} +bigl( J^{boldsymbol{alpha}}_{boldsymbol{2}}bigr)^{boldsymbol{2}}+bigl( J^{boldsymbol{alpha}}_{boldsymbol{3}}bigr)^{boldsymbol{2}} = j_{alpha}(j_{alpha}+1)mathrm{I}_{alpha} tag{79a} bigl(mathbf{J}^{boldsymbol{beta}}bigr)^{boldsymbol{2}} &=bigl( J^{boldsymbol{beta}}_{boldsymbol{1}}bigr)^{boldsymbol{2}} +bigl( J^{boldsymbol{beta}}_{boldsymbol{2}}bigr)^{boldsymbol{2}}+bigl( J^{boldsymbol{beta}}_{boldsymbol{3}}bigr)^{boldsymbol{2}} = j_{beta}(j_{beta}+1) mathrm{I}_{beta} tag{79b} mathrm{I}_{alpha} boldsymbol{otimes}mathrm{I}_{beta} & equiv mathrm{I}_{f}=text{identity in } mathsf{H}_{f}=mathsf{H}_{alpha}boldsymbol{otimes}mathsf{H}_{beta} tag{79c} end{align} addition of equations (78) yields begin{equation} mathbf{J}^{boldsymbol{2}} =bigl[ j_{alpha}(j_{alpha}+1)+ j_{beta}(j_{beta}+1) bigr] mathrm{I}_{f} +2sum_{q=1}^{q=3}Bigl( J^{boldsymbol{alpha}}_{boldsymbol{q}}boldsymbol{otimes}J^{boldsymbol{beta}}_{boldsymbol{q}}Bigr) tag{80} end{equation} The first term in the right side of (80) is represented by a diagonal matrix as a scalar multiple of the identity. The second series term "destroys" this diagonal form.


BIBLIOGRAPHY

  1. Weyl Hermann : The Theory of Groups and Quantum Mechanics, Dover Publications (1950)
  2. Schiff Leonard I. : Quantum Mechanics, McGraw-Hill Book Company, 3rd edition (1955)
  3. Biedenharn L.C., Louck James D. : Angular Momentum in Quantum Physics, Addison-Wesley (1981)- Cambridge University Press (1984)
  4. Louck James D. : Unitary Symmetry and Combinatorics, World Scientific (2008)
  5. Louck James D. : Applications of Unitary Symmetry and Combinatorics, World Scientific (2011)

enter image description here

(click on image to zoom in-out)

(to be continued with an Example in FIFTH___ANSWER)

Answered by Frobenius on April 8, 2021

F I F T H___ A N S W E R

(upvote or downvote my 1rst answer only. My 2nd,3rd,4th and 5th answers are addenda to it)

(continued from F O U R T H___ A N S W E R )

Example

Let the system $;alpha;$ be a particle $;p_{alpha};$ with spin $;j_{alpha}=1/2;$ and the system $;beta;$ be a particle $;p_{beta};$ with orbital angular momentum or spin $;j_{beta}=1$. Alternatively, the system $;beta;$ may be the same particle $;p_{alpha};$ with orbital angular momentum $;j_{beta}=1$.

So, in system $;alpha;$ begin{equation} J^{boldsymbol{alpha}}_{1}=tfrac{1}{2} begin{bmatrix} 0 & 1 1 & 0 end{bmatrix}, quad J^{boldsymbol{alpha}}_{2}=tfrac{1}{2} begin{bmatrix} 0 & !!!-i i & 0 end{bmatrix}, quad J^{boldsymbol{alpha}}_{3}=tfrac{1}{2} begin{bmatrix} 1 & 0 0 & !!!-1 end{bmatrix} tag{Ex-01} end{equation} and begin{equation} left(mathbf{J}^{boldsymbol{alpha}}right)^{2}=left(J^{boldsymbol{alpha}}_{1}right)^{2}+left(J^{boldsymbol{alpha}}_{2}right)^{2}+left(J^{boldsymbol{alpha}}_{3}right)^{2}= j_{alpha}left( j_{alpha}+1right)cdot mathrm{I}_{mathbf{a}}=tfrac{3}{4} begin{bmatrix} 1 & 0 0 & 1 end{bmatrix} tag{Ex-02} end{equation} The basic vectors $mathbf{a}_{imath}: (imath=1,2)$ are the common eigenvectors of $left(mathbf{J}^{alpha}right)^{2}$ and $J^{alpha}_{3}$ : begin{align} mathbf{a}_{1} & = left|j_{alpha},m^{alpha}_{1} rightrangle_{!a}=left|tfrac{1}{2},+tfrac{1}{2}rightrangle_{!a} = begin{bmatrix} 1 0 end{bmatrix}_{!a} tag{Ex-03.1} mathbf{a}_{2} & = left|j_{alpha},m^{alpha}_{2} rightrangle_{!a}=left|tfrac{1}{2},-tfrac{1}{2}rightrangle_{!a} = begin{bmatrix} 0 1 end{bmatrix}_{!a} tag{Ex-03.2} end{align} A state of system $alpha$ is represented by a 2-dimensional complex vector $boldsymbol{xi}$ begin{align} boldsymbol{xi} & = xi_{1}mathbf{a}_{1}!!+!xi_{2}mathbf{a}_{2}=xi_{1}left|j_{alpha},m^{alpha}_{1} rightrangle_{!a}!!+!xi_{2}left|j_{alpha},m^{alpha}_{2} rightrangle_{!a} nonumber & = xi_{1}left|tfrac{1}{2},+tfrac{1}{2}rightrangle_{!a}!!+!xi_{2}left|tfrac{1}{2},-tfrac{1}{2}rightrangle_{!a} = xi_{1}!! begin{bmatrix} 1 0 end{bmatrix}_{!a} !!+! xi_{2}!! begin{bmatrix} 0 1 end{bmatrix}_{!a} = begin{bmatrix} xi_{1} xi_{2} end{bmatrix}_{!a} tag{Ex-04} end{align} in Hilbert space begin{equation} mathsf{H}_{alpha}equivleft{boldsymbol{xi}in mathbb{C}^{boldsymbol{2}}: boldsymbol{xi}= xi_{1}mathbf{a}_{1}+xi_{2}mathbf{a}_{2} right} tag{Ex-05} end{equation}

In system $;beta;$ begin{equation} J^{boldsymbol{beta}}_{1}=sqrt{tfrac{1}{2}} begin{bmatrix} 0 & 1 & 0 1 & 0 & 1 0 & 1 & 0 end{bmatrix}, quad J^{boldsymbol{beta}}_{2}=sqrt{tfrac{1}{2}} begin{bmatrix} 0 & !!!-i & 0 i & 0 & !!!-i 0 & i & 0 end{bmatrix}, quad J^{boldsymbol{beta}}_{3}= begin{bmatrix} 1 & 0 & 0 0 & 0 & 0 0 & 0 & !!!-1 end{bmatrix} tag{Ex-06} end{equation} and begin{equation} left(mathbf{J}^{boldsymbol{beta}}right)^{2}=left(J^{boldsymbol{beta}}_{1}right)^{2}+left(J^{boldsymbol{beta}}_{2}right)^{2}+left(J^{boldsymbol{beta}}_{3}right)^{2}= j_{beta}left( j_{beta}+1right)cdot mathrm{I}_{mathbf{b}}=2 begin{bmatrix} 1 & 0 & 0 0 & 1 & 0 0 & 0 & 1 end{bmatrix} tag{Ex-07} end{equation} The basic vectors $mathbf{b}_{jmath}: (jmath=1,2,3)$ are the common eigenvectors of $left(mathbf{J}^{beta}right)^{2}$ and $J^{beta}_{3}$ : begin{align} mathbf{b}_{1} & = left|j_{beta},m^{beta}_{1} rightrangle_{!b}=left|1,:!!+!1rightrangle_{!b} = begin{bmatrix} 1 0 0 end{bmatrix}_{!b} tag{Ex-08.1} mathbf{b}_{2} & = left|j_{beta},m^{beta}_{2} rightrangle_{!b}=left|1,:0:rightrangle_{!b} = begin{bmatrix} 0 1 0 end{bmatrix}_{!b} tag{Ex-08.2} mathbf{b}_{3} & = left|j_{beta},m^{beta}_{3} rightrangle_{!b}=left|1,:!!-!1rightrangle_{!b} = begin{bmatrix} 0 0 1 end{bmatrix}_{!b} tag{Ex-08.3} end{align} A state of system $beta$ is represented by a 3-dimensional complex vector $boldsymbol{eta}$ begin{align} boldsymbol{eta} & =eta_{1}mathbf{b}_{1}!+!eta_{2}mathbf{b}_{2}!+!eta_{3}mathbf{b}_{3}= eta_{1}left|j_{beta},m^{beta}_{1}rightrangle_{!b}!+!eta_{2} left|j_{beta},m^{beta}_{2} rightrangle_{!b}!+!eta_{3}left|j_{beta},m^{beta}_{3} rightrangle_{!b} nonumber & = eta_{1}!left|1,:!!+!1rightrangle_{!b}!+!eta_{2}!left|1,:0:rightrangle_{!b}!+!eta_{3}!left|1,:!!-!1rightrangle_{!b} !=! eta_{1}!! begin{bmatrix} 1 0 0 end{bmatrix}_{!b} !!!!+!eta_{2}!! begin{bmatrix} 0 1 0 end{bmatrix}_{!b} !!!!+!eta_{3}!! begin{bmatrix} 0 0 1 end{bmatrix}_{!b} !=! begin{bmatrix} eta_{1} eta_{2} eta_{3} end{bmatrix}_{!b} tag{Ex-09} end{align} in Hilbert space begin{equation} mathsf{H}_{beta}equivleft{boldsymbol{eta}in mathbb{C}^{boldsymbol{3}}: boldsymbol{eta} =eta_{1}mathbf{b}_{1}+eta_{2}mathbf{b}_{2}+eta_{3}mathbf{b}_{3} right} tag{Ex-10} end{equation}

According to the general equations (15) a product state of the composite system is begin{equation} boldsymbol{chi} = boldsymbol{xi} boldsymbol{otimes} boldsymbol{eta}=left( sum_{imath=1}^{imath=2}xi_{imath}mathbf{a}_{imath}right) boldsymbol{otimes}left( sum_{jmath=1}^{jmath=3}eta_{jmath}mathbf{b}_{jmath}right)= sum_{imath,jmath=1,1}^{imath,jmath=2,3}xi_{imath}eta_{jmath}left( mathbf{a}_{imath} boldsymbol{otimes }mathbf{b}_{jmath}right) tag{Ex-11} end{equation} with matrix representation, in agreement with equation (18) begin{equation} boldsymbol{chi}= begin{bmatrix} begin{array}{c} chi_{1} chi_{2} chi_{3} chi_{4} chi_{5} chi_{6} end{array} end{bmatrix}_{!e}= begin{bmatrix} begin{array}{c} xi_{1}eta_{1} xi_{1}eta_{2} xi_{1}eta_{3} xi_{2}eta_{1} xi_{2}eta_{2} xi_{2}eta_{3} end{array} end{bmatrix}_{!e}= boldsymbol{xi} boldsymbol{otimes} boldsymbol{eta} tag{Ex-12} end{equation} This representation is relatively to the basis $:leftlbrace mathbf{e}_{k}rightrbrace :$ defined according to the general equations (16): begin{align} mathbf{e}_{1} & equiv mathbf{a}_{1}boldsymbol{otimes} mathbf{b}_{1}=left|tfrac{1}{2},+tfrac{1}{2}rightrangle_{!a}boldsymbol{otimes}left|1,:!!+!1rightrangle_{!b}= begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 end{bmatrix}^{!mathsf{T}} tag{Ex-13.1} mathbf{e}_{2} & equiv mathbf{a}_{1}boldsymbol{otimes} mathbf{b}_{2}=left|tfrac{1}{2},+tfrac{1}{2}rightrangle_{!a}boldsymbol{otimes}left|1,:0:rightrangle_{!b}= begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 end{bmatrix}^{!mathsf{T}} tag{Ex-13.2} mathbf{e}_{3} & equiv mathbf{a}_{1}boldsymbol{otimes} mathbf{b}_{3}=left|tfrac{1}{2},+tfrac{1}{2}rightrangle_{!a}boldsymbol{otimes}left|1,:!!-!1rightrangle_{!b}= begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 end{bmatrix}^{!mathsf{T}} tag{Ex-13.3} mathbf{e}_{4} & equiv mathbf{a}_{2}boldsymbol{otimes} mathbf{b}_{1}=left|tfrac{1}{2},-tfrac{1}{2}rightrangle_{!a}boldsymbol{otimes}left|1,:!!+!1rightrangle_{!b}= begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 end{bmatrix}^{!mathsf{T}} tag{Ex-13.4} mathbf{e}_{5} & equiv mathbf{a}_{2}boldsymbol{otimes} mathbf{b}_{2}=left|tfrac{1}{2},-tfrac{1}{2}rightrangle_{!a}boldsymbol{otimes}left|1,:0:rightrangle_{!b}= begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 end{bmatrix}^{!mathsf{T}} tag{Ex-13.5} mathbf{e}_{6} & equiv mathbf{a}_{2}boldsymbol{otimes} mathbf{b}_{3}=left|tfrac{1}{2},-tfrac{1}{2}rightrangle_{!a}boldsymbol{otimes}left|1,:!!-!1rightrangle_{!b}= begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 end{bmatrix}^{!mathsf{T}} tag{Ex-13.6} end{align} where the symbol $:mathsf{T}:$ means the Transpose.

According to the general equation (23) the product space is the 6-dimensional complex Hilbert space begin{equation} mathsf{H}_{f}=mathsf{H}_{alpha}boldsymbol{otimes}mathsf{H}_{beta}equiv lbrace ; boldsymbol{chi} ; : ;boldsymbol{chi}=sum_{k=1}^{k=6}chi_{k}mathbf{e}_{k},;chi_{k} in mathbb{C} rbrace tag{Ex-14} end{equation} identical to $mathbb{C}^{6}$.

From equation (69c) with the help of (47), both repeated here for convenience
begin{equation} J_{3} = Bigl(J^{boldsymbol{alpha}}_{3}boldsymbol{otimes}mathrm{I}_{boldsymbol{beta}}Bigr)+Bigl(mathrm{I}_{boldsymbol{alpha}}boldsymbol{otimes} J^{boldsymbol{beta}}_{3}Bigr) tag{69c} end{equation} begin{equation} mathrm{C}=mathrm{A}boldsymbol{otimes} mathrm{B} = begin{bmatrix} a_{11}mathrm{B} & a_{12}mathrm{B} & cdots & a_{1 rho}mathrm{B} & cdots & a_{1r}mathrm{B} a_{21}mathrm{B} & a_{22}mathrm{B} & cdots & a_{2 rho}mathrm{B} & cdots & a_{2r}mathrm{B} vdots & vdots & ddots & vdots & ddots & vdots a_{imath 1}mathrm{B} & a_{imath 2}mathrm{B} & cdots & a_{imath rho}mathrm{B} & cdots & a_{imath r}mathrm{B} vdots & vdots & ddots & vdots & ddots & vdots a_{r1}mathrm{B} & a_{r2}mathrm{B} & cdots & a_{r rho}mathrm{B} & cdots & a_{rr}mathrm{B} end{bmatrix} tag{47} end{equation} and the matrix expressions of $:J^{boldsymbol{alpha}}_{3}:$ and $:J^{boldsymbol{beta}}_{3}:$ in equations (Ex-01) and (Ex-06) respectively, we have begin{align} Bigl(J^{boldsymbol{alpha}}_{3}boldsymbol{otimes}mathrm{I}_{boldsymbol{beta}}Bigr) & = tfrac{1}{2} begin{bmatrix} 1 & 0 & 0 & !!!-1 end{bmatrix} boldsymbol{otimes} begin{bmatrix} 1 & 0 & 0 0 & 1 & 0 0 & 0 & 1 end{bmatrix} = begin{bmatrix} tfrac{1}{2} & 0 & 0 & 0 & 0 & 0 0 & tfrac{1}{2} & 0 & 0 & 0 & 0 0 & 0 & tfrac{1}{2} & 0 & 0 & 0 0 & 0 & 0 & !!!-tfrac{1}{2} & 0 & 0 0 & 0 & 0 & 0 & !!!-tfrac{1}{2} & 0 0 & 0 & 0 & 0 & 0 & !!!-tfrac{1}{2} end{bmatrix} tag{Ex-15.1} Bigl(mathrm{I}_{boldsymbol{alpha}}boldsymbol{otimes} J^{boldsymbol{beta}}_{3}Bigr)& =quad !! begin{bmatrix} 1 & 0 & 0 & 1 end{bmatrix} boldsymbol{otimes} begin{bmatrix} 1 & 0 & 0 0 & 0 & 0 0 & 0 & !!!-1 end{bmatrix} = begin{bmatrix} ;1 & 0 & 0 & 0 & 0 & 0 0 & 0 & 0 & 0 & 0 & 0 0 & 0 & -1 & 0 & 0 & 0 0 & 0 & 0 & ;1 & 0 & 0 0 & 0 & 0 & 0 & 0 & 0 0 & 0 & 0 & 0 & 0 & -1 end{bmatrix} tag{Ex-15.2} end{align} Adding equations (15.1), (15.2) we find the following diagonal form of $:J_{boldsymbol{3}}:$ begin{equation} J_{boldsymbol{3}} = begin{bmatrix} begin{array}{cccccc} !!+frac{3}{2}&0&0&0&0&0 0&!!+frac{1}{2}&0&0&0&0 0&0&!!-frac{1}{2}&0&0&0 0&0&0&!!+frac{1}{2}&0&0 0&0&0&0&!!-frac{1}{2}&0 0&0&0&0&0&!!-frac{3}{2} end{array} end{bmatrix} tag{Ex-16} end{equation} As expected its diagonal elements, that is its eigenvalues, are all possible sums $;left(m^{boldsymbol{alpha}}_{boldsymbol{imath}}+m^{boldsymbol{beta}}_{boldsymbol{jmath}}right) ;$ of the corresponding eigenvalues of its summands. These are the $;2cdot3;$ combinations of begin{align} m^{boldsymbol{alpha}}_{boldsymbol{imath}} & = +tfrac{1}{2},-tfrac{1}{2} tag{16.1a} m^{boldsymbol{beta}}_{boldsymbol{jmath}} & = +1,0,-1 tag{16.1b} end{align} From general expression for $:mathbf{J}^{boldsymbol{2}}:$, equation (80), which we repeat here for convenience begin{equation} mathbf{J}^{boldsymbol{2}} =bigl[ j_{alpha}(j_{alpha}+1)+ j_{beta}(j_{beta}+1) bigr] mathrm{I}_{f} +2sum_{q=1}^{q=3}Bigl( J^{boldsymbol{alpha}}_{boldsymbol{q}}boldsymbol{otimes}J^{boldsymbol{beta}}_{boldsymbol{q}}Bigr) tag{80} end{equation} we have for the first term of the right hand side the following scalar multiple of the $:6 times 6:$ identity matrix begin{equation} bigl[ j_{alpha}(j_{alpha}+1)+ j_{beta}(j_{beta}+1) bigr] mathrm{I}_{f}= bigl(tfrac{3}{4}+2 bigr) mathrm{I}_{f}= tfrac{11}{4} begin{bmatrix} begin{array}{cccccc} 1&0&0&0&0&0 0&1&0&0&0&0 0&0&1&0&0&0 0&0&0&1&0&0 0&0&0&0&1&0 0&0&0&0&0&1 end{array} end{bmatrix} tag{Ex-17} end{equation} while using the matrix representations of $:J^{boldsymbol{alpha}}_{boldsymbol{q}}:$ and $:J^{boldsymbol{beta}}_{boldsymbol{q}}:$ for the three terms in series, equations (Ex-01) and (Ex-06) respectively, we have successively begin{align} J^{boldsymbol{alpha}}_{boldsymbol{1}}boldsymbol{otimes}J^{boldsymbol{beta}}_{boldsymbol{1}} & = tfrac{1}{2} begin{bmatrix} 0 & 1 1 & 0 end{bmatrix} boldsymbol{otimes} sqrt{tfrac{1}{2}} begin{bmatrix} 0 & 1 & 0 1 & 0 & 1 0 & 1 & 0 end{bmatrix} = tfrac{1}{2sqrt{2}} begin{bmatrix} 0&0&0&0&1&0 0&0&0&1&0&1 0&0&0&0&1&0 0&1&0&0&0&0 1&0&1&0&0&0 0&1&0&0&0&0 end{bmatrix} tag{Ex-18.1} J^{boldsymbol{alpha}}_{boldsymbol{2}}boldsymbol{otimes}J^{boldsymbol{beta}}_{boldsymbol{2}} & = tfrac{1}{2} begin{bmatrix} 0 & !!!-i i & 0 end{bmatrix} boldsymbol{otimes} sqrt{tfrac{1}{2}} begin{bmatrix} 0 & !!!-i & 0 i & 0 & !!!-i 0 & i & 0 end{bmatrix} =tfrac{1}{2sqrt{2}}!! begin{bmatrix} 0&0&0&0&!!!!-!1&0 0&0&0&1&0&!!!!-!1 0&0&0&0&1&0 0&1&0&0&0&0 !!-!1&0&1&0&0&0 0&!!!!-!1&0&0&0&0 end{bmatrix} tag{Ex-18.2} J^{boldsymbol{alpha}}_{boldsymbol{3}}boldsymbol{otimes}J^{boldsymbol{beta}}_{boldsymbol{3}} & = tfrac{1}{2} begin{bmatrix} 1 & 0 0 & !!!-1 end{bmatrix} boldsymbol{otimes} begin{bmatrix} 1 & 0 & 0 0 & 0 & 0 0 & 0 & !!!-1 end{bmatrix} =tfrac{1}{2} begin{bmatrix} 1&0&0&0&0&0 0&0&0&0&0&0 0&0&!!!-!1&0&0&0 0&0&0&!!!-!1&0&0 0&0&0&0&0&0 0&0&0&0&0&1 end{bmatrix} tag{Ex-18.3} end{align} so adding equations (18) begin{equation} 2sum_{q=1}^{q=3}Bigl( J^{boldsymbol{alpha}}_{boldsymbol{q}}boldsymbol{otimes}J^{boldsymbol{beta}}_{boldsymbol{q}}Bigr)= begin{bmatrix} 1&0&0&0&0&0 0&0&0&sqrt{2}&0&0 0&0&-1&0&sqrt{2}&0 0&sqrt{2}&0&-1&0&0 0&0&sqrt{2}&0&0&0 0&0&0&0&0&1 end{bmatrix} tag{Ex-19} end{equation} while adding equations (17) and (19) we have finally for $:mathbf{J}^{boldsymbol{2}}:$ begin{equation} mathbf{J}^{boldsymbol{2}} = begin{bmatrix} frac{15}{4}&0&0&0&0&0 0&frac{11}{4}&0&sqrt{2}&0&0 0&0&frac{7}{4}&0&sqrt{2}&0 0&sqrt{2}&0&frac{7}{4}&0&0 0&0&sqrt{2}&0&frac{11}{4}&0 0&0&0&0&0&frac{15}{4} end{bmatrix} tag{Ex-20} end{equation} Now, to find the eigenvalues and eigenvectors of this $;6times 6 ;$ symmetric matrix $:mathbf{J}^{boldsymbol{2}}:$ is not so difficult as it seems from a first glance because :

1. The state $:mathbf{e}_{1}:$ is a common eigenstate of $:J_{boldsymbol{3}}:$ and $:mathbf{J}^{boldsymbol{2}} :$ of eigenvalue $widetilde{m}_{1}=+tfrac{3}{2}$ and $:widetilde{lambda}_{1}=tfrac{15}{4}=tfrac{3}{2}left(tfrac{3}{2}+1right):$ respectively : begin{align} J_{boldsymbol{3}}mathbf{e}_{1} & = widetilde{m}_{1}cdotmathbf{e}_{1} =left( +tfrac{3}{2}right) cdotmathbf{e}_{1} tag{Ex-21a} mathbf{J}^{boldsymbol{2}}mathbf{e}_{1} & = widetilde{lambda}_{1}cdotmathbf{e}_{1}=tfrac{15}{4}cdotmathbf{e}_{1}=tfrac{3}{2}left(tfrac{3}{2}+1right)cdotmathbf{e}_{1} tag{Ex-21b} end{align}

The operator $:mathbf{J}^{boldsymbol{2}} :$ leaves invariant the 1-dimensional eigenspace of $:J_{boldsymbol{3}}:$ with eigenvalue $:widetilde{m}_{1}=+tfrac{3}{2}$, that is the subspace spanned by the state $:leftlbrace mathbf{e}_{1}rightrbrace$.

2. The state $:mathbf{e}_{6}:$ is a common eigenstate of $:J_{boldsymbol{3}}:$ and $:mathbf{J}^{boldsymbol{2}} :$ of eigenvalue $widetilde{m}_{6}=-tfrac{3}{2}$ and $:widetilde{lambda}_{6}=tfrac{15}{4}=tfrac{3}{2}left(tfrac{3}{2}+1right):$ respectively : begin{align} J_{boldsymbol{3}}mathbf{e}_{6} & = widetilde{m}_{6}cdotmathbf{e}_{6}=left( -tfrac{3}{2}right) cdotmathbf{e}_{6} tag{Ex-22a} mathbf{J}^{boldsymbol{2}}mathbf{e}_{6} & = widetilde{lambda}_{6}cdotmathbf{e}_{6}=tfrac{15}{4}cdotmathbf{e}_{6}=tfrac{3}{2}left(tfrac{3}{2}+1right)cdotmathbf{e}_{6} tag{Ex-22b} end{align}

The operator $:mathbf{J}^{boldsymbol{2}} :$ leaves invariant the 1-dimensional eigenspace of $:J_{boldsymbol{3}}:$ with eigenvalue $:widetilde{m}_{6}=-tfrac{3}{2}$, that is the subspace spanned by the state $:leftlbrace mathbf{e}_{6}rightrbrace$.

3.The eigenstates $:mathbf{e}_{2}:$ and $:mathbf{e}_{4}:$ of $:J_{boldsymbol{3}}:$ with eigenvalue $:+tfrac{1}{2}:$ are transformed by $:mathbf{J}^{boldsymbol{2}} :$ to linear combinations of these same eigenstates begin{align} mathbf{J}^{boldsymbol{2}}mathbf{e}_{2} & = tfrac{11}{4}cdotmathbf{e}_{2}+sqrt{2}cdotmathbf{e}_{4} tag{Ex-23a} mathbf{J}^{boldsymbol{2}}mathbf{e}_{4} & = sqrt{2}cdotmathbf{e}_{2}+tfrac{7}{4}cdotmathbf{e}_{4} tag{Ex-23b} end{align}

The operator $:mathbf{J}^{boldsymbol{2}} :$ leaves invariant the 2-dimensional eigenspace of $:J_{boldsymbol{3}}:$ with eigenvalue $:+tfrac{1}{2}=widetilde{m}_{2}=widetilde{m}_{4}$, that is the subspace spanned by states $:leftlbrace mathbf{e}_{2},mathbf{e}_{4} rightrbrace :$. Its restriction on this subspace is represented by a real symmetric $:2 times 2:$ matrix, so it has in this subspace two real eigenvalues which moreover are positive and different, see in the following.

4.The eigenstates $:mathbf{e}_{3}:$ and $:mathbf{e}_{5}:$ of $:J_{boldsymbol{3}}:$ with eigenvalue $:-tfrac{1}{2}:$ are transformed by $:mathbf{J}^{boldsymbol{2}} :$ to linear combinations of these same eigenstates begin{align} mathbf{J}^{boldsymbol{2}}mathbf{e}_{3} & = tfrac{7}{4}cdotmathbf{e}_{3}+sqrt{2}cdotmathbf{e}_{5} tag{Ex-24a} mathbf{J}^{boldsymbol{2}}mathbf{e}_{5} & = sqrt{2}cdotmathbf{e}_{3}+tfrac{11}{4}cdotmathbf{e}_{5} tag{Ex-24b} end{align}

The operator $:mathbf{J}^{boldsymbol{2}} :$ leaves invariant the 2-dimensional eigenspace of $:J_{boldsymbol{3}}:$ with eigenvalue $:-tfrac{1}{2}=widetilde{m}_{3}=widetilde{m}_{5}$, that is the subspace spanned by states $:leftlbrace mathbf{e}_{3},mathbf{e}_{5}rightrbrace$. Its restriction on this subspace is represented by a real symmetric $:2 times 2:$ matrix, so it has in this subspace two real eigenvalues which moreover are positive and different, see in the following.

enter image description here enter image description here

begin{equation} widehat{mathbf{J}}^{boldsymbol{2}} = begin{bmatrix} begin{array}{cc|cccc} frac{3}{4}& & & & & &frac{3}{4} & & & & hline & &frac{15}{4}& & & & & &frac{15}{4}& & & & & &frac{15}{4}& & & & & &frac{15}{4} end{array} end{bmatrix} tag{Ex-25} end{equation} begin{equation} widehat{J}_{boldsymbol{1}} = begin{bmatrix} begin{array}{cc|cccc} 0 & tfrac{1}{2}& & & & tfrac{1}{2}&0& & & & hline & &0&tfrac{sqrt{3}}{2}&0&0 & &tfrac{sqrt{3}}{2}&0&1&0 & &0&1&0&tfrac{sqrt{3}}{2} & &0&0&tfrac{sqrt{3}}{2}&0 end{array} end{bmatrix} tag{Ex-25.1} end{equation} begin{equation} widehat{J}_{boldsymbol{2}} = begin{bmatrix} begin{array}{cc|cccc} 0 &!!!-itfrac{1}{2}& & & & itfrac{1}{2} & 0& & & & hline & &0&!!!!-itfrac{sqrt{3}}{2}&0&0 & &!!!itfrac{sqrt{3}}{2}&0&-i&0 & &0&i&0&!!!!-itfrac{sqrt{3}}{2} & &0&0&!!!itfrac{sqrt{3}}{2}&0 end{array} end{bmatrix} tag{Ex-25.2} end{equation} begin{equation} widehat{J}_{boldsymbol{3}} = begin{bmatrix} begin{array}{cc|cccc} frac{1}{2}& & & & & &-frac{1}{2} & & & & hline & &frac{3}{2}& & & & & &frac{1}{2}& & & & & &-frac{1}{2}& & & & & &-frac{3}{2} end{array} end{bmatrix} tag{Ex-25.3} end{equation}

Above matrix representations are with respect to the basis $:lbracemathbf{f}_{k}, k=1,2,3,4,5,6 rbrace$ (see Table 2). begin{align} mathbf{f}_{1} & = mathbf{left|tfrac{1}{2};,+tfrac{1}{2}rightrangle_{[1]}} =sqrt{tfrac{1}{3}}cdotleft|tfrac{1}{2},+tfrac{1}{2}rightrangle_{!a}left|1,:0:rightrangle_{!b}-sqrt{tfrac{2}{3}}cdotleft|tfrac{1}{2},-tfrac{1}{2}rightrangle_{!a}left|1,:!!+!1rightrangle_{!b} tag{Ex-26.1} mathbf{f}_{2} & = mathbf{left|tfrac{1}{2};,-tfrac{1}{2}rightrangle_{[1]}} =sqrt{tfrac{2}{3}}cdotleft|tfrac{1}{2},+tfrac{1}{2}rightrangle_{!a}left|1,:!!-!1rightrangle_{!b}-sqrt{tfrac{1}{3}}cdotleft|tfrac{1}{2},-tfrac{1}{2}rightrangle_{!a}left|1,:0:rightrangle_{!b} tag{Ex-26.2} mathbf{f}_{3} & = mathbf{left|tfrac{3}{2};,+tfrac{3}{2}rightrangle_{[2]}} = left|tfrac{1}{2},+tfrac{1}{2}rightrangle_{!a}left|1,:!!+!1rightrangle_{!b} tag{Ex-26.3} mathbf{f}_{4} & = mathbf{left|tfrac{3}{2};,+tfrac{1}{2}rightrangle_{[2]}} =sqrt{tfrac{2}{3}}cdotleft|tfrac{1}{2},+tfrac{1}{2}rightrangle_{!a}left|1,:0:rightrangle_{!b}+sqrt{tfrac{1}{3}}cdotleft|tfrac{1}{2},-tfrac{1}{2}rightrangle_{!a}left|1,:!!+!1rightrangle_{!b} tag{Ex-26.4} mathbf{f}_{5} & = mathbf{left|tfrac{3}{2};,-tfrac{1}{2}rightrangle_{[2]}} =sqrt{tfrac{1}{3}}cdotleft|tfrac{1}{2},+tfrac{1}{2}rightrangle_{!a}left|1,:!!-!1rightrangle_{!b}+sqrt{tfrac{2}{3}}cdotleft|tfrac{1}{2},-tfrac{1}{2}rightrangle_{!a}left|1,:0:rightrangle_{!b} tag{Ex-26.5} mathbf{f}_{6} & = mathbf{left|tfrac{3}{2};,-tfrac{3}{2}rightrangle_{[2]}} = left|tfrac{1}{2},-tfrac{1}{2}rightrangle_{!a}left|1,:!!-!1rightrangle_{!b} tag{Ex-26.6} end{align} Expressions are simplified by omitting the symbol $;'boldsymbol{otimes}';$ in the product of states.

THE END

Answered by Frobenius on April 8, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP