AnswerBun.com

SWAP specific phase components of two qubits

Quantum Computing Asked on January 3, 2022

Is it possible to perform an operation on two qubits with initial states as follows:

$$q_1: 1/sqrt(2)(|0rangle + exp(0.a_1a_2a_3)|1rangle)$$
$$q_2: 1/sqrt(2)(|0rangle + |1rangle)$$

To resultant state:-

$$q_1: 1/sqrt(2)(|0rangle + exp(0.a_1a_2)|1rangle)$$
$$q_2: 1/sqrt(2)(|0rangle + exp(0.a_3)|1rangle)$$

Without knowing the value of $a_3$. Where $a_1,a_2,a_3 ∈ [0, 1].$

The idea is to shift the phase of $q_1$ by $exp(-0.00a_3)$ and $q_2$ by $exp(0.a_3)$ with the unitary operation not being aware of the value of $a_3$.

One Answer

No, it's not possible to extract digits of the phase like that. It would violate the Holevo bound. In general there's no way to "amplify" single small phase differences into big phase differences, because of linearity.

Answered by Craig Gidney on January 3, 2022

Add your own answers!

Related Questions

Proof of an Holevo information inequality

1  Asked on February 26, 2021 by stephen-diadamo

     

Does normalizing a mixed state give a pure state?

2  Asked on February 16, 2021 by eesh-starryn

 

Ask a Question

Get help from others!

© 2023 AnswerBun.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP