TransWikia.com

How to produce mAP metrics of a test image with bounding box coordinates and ground truth coordinates from COCO json in Tensorflow?

Stack Overflow Asked by Alperen Aksu on January 10, 2021

I have just followed this walkthrough for my Neural network project.

If I sum up this walkthrough basically, we trained our model and export interference graph as shown in walkthrough’s sections. In these training steps, as you guess it show mAP metrics of training job. After these steps, in the last part "run interference test", we test our images and it produces images that have been drawn labeled bounding box on them. But it doesn’t produce metrics like mAP etc… for each images. I have looked source codes of this part, but I cannot find any configuration or method for it.

def run_inference_for_single_image(image, graph):
    with graph.as_default():
        with tf.Session() as sess:
            # Get handles to input and output tensors
            ops = tf.get_default_graph().get_operations()
            all_tensor_names = {
                output.name for op in ops for output in op.outputs}
            tensor_dict = {}
            for key in [
                'num_detections', 'detection_boxes', 'detection_scores',
                'detection_classes', 'detection_masks'
            ]:
                tensor_name = key + ':0'
                if tensor_name in all_tensor_names:
                    tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
                        tensor_name)
            if 'detection_masks' in tensor_dict:
                # The following processing is only for single image
                detection_boxes = tf.squeeze(
                    tensor_dict['detection_boxes'], [0])
                detection_masks = tf.squeeze(
                    tensor_dict['detection_masks'], [0])
                # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
                real_num_detection = tf.cast(
                    tensor_dict['num_detections'][0], tf.int32)
                detection_boxes = tf.slice(detection_boxes, [0, 0], [
                                           real_num_detection, -1])
                detection_masks = tf.slice(detection_masks, [0, 0, 0], [
                                           real_num_detection, -1, -1])
                detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
                    detection_masks, detection_boxes, image.shape[0], image.shape[1])
                detection_masks_reframed = tf.cast(
                    tf.greater(detection_masks_reframed, 0.5), tf.uint8)
                # Follow the convention by adding back the batch dimension
                tensor_dict['detection_masks'] = tf.expand_dims(
                    detection_masks_reframed, 0)
            image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')

            # Run inference
            output_dict = sess.run(tensor_dict,
                                   feed_dict={image_tensor: np.expand_dims(image, 0)})

            # all outputs are float32 numpy arrays, so convert types as appropriate
            output_dict['num_detections'] = int(
                output_dict['num_detections'][0])
            output_dict['detection_classes'] = output_dict[
                'detection_classes'][0].astype(np.uint8)
            output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
            output_dict['detection_scores'] = output_dict['detection_scores'][0]
            if 'detection_masks' in output_dict:
                output_dict['detection_masks'] = output_dict['detection_masks'][0]
    return output_dict

I have COCO json file that contains groundtruth boxes info of images. Is there any way to produce this metric?

#This code produces images that have labeled bounding boxes.
for image_path in TEST_IMAGE_PATHS:
    image = Image.open(image_path)
    # the array based representation of the image will be used later in order to prepare the
    # result image with boxes and labels on it.
    image_np = load_image_into_numpy_array(image)
    # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
    image_np_expanded = np.expand_dims(image_np, axis=0)
    # Actual detection.
    output_dict = run_inference_for_single_image(image_np, detection_graph)
    # Visualization of the results of a detection.
    vis_util.visualize_boxes_and_labels_on_image_array(
        image_np,
        output_dict['detection_boxes'],
        output_dict['detection_classes'],
        output_dict['detection_scores'],
        category_index,
        instance_masks=output_dict.get('detection_masks'),
        use_normalized_coordinates=True,
        line_thickness=8)
    plt.figure(figsize=IMAGE_SIZE)
    plt.imshow(image_np)

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP