TeX - LaTeX Asked on January 5, 2022

I’m trying to make beamer presentation, but getting an

1. overbox full error and also,

2. the image is not getting inserted.

3. Also, at the end of beamer, my name and institution name, both are getting reflected. I want only the institution name to appear below.

```
documentclass{beamer}
usetheme{Boadilla}
usepackage[utf8]{inputenc}
usepackage{amsmath}
usepackage{mathtools}
usepackage{booktabs}
usepackage{geometry}
usepackage{graphicx,wrapfig}
graphicspath{E:MSESem IVAlgorithmsproject}
usepackage{fourier}
usepackage{tabularx}
usepackage{tkz-graph}
usepackage{tikz}
usetikzlibrary{decorations.markings}
tikzstyle{vertex}=[circle, draw, inner sep=0pt, minimum size=6pt]
usepackage{array}
newcommand{vertex}{node[vertex]}
newcounter{Angle}
usepackage{tabto}
usepackage{makecell}
newcommandmyatop[2]{left[{{#1}atop#2}right]} % "wrapper macro"
newcolumntype{Z}{ >{centeringarraybackslash}X }
title{Regression Types}
author{Vaibbhav Devender Kalra}
institute{Madras School of Economics}
date{today}
begin{document}
begin{frame}
titlepage
end{frame}
section{Linear Regression}
subsection{Simple Linear Regression}
begin{frame}
frametitle{Index}
tableofcontents
end{frame}
begin{frame}
frametitle{Linear Regression}
underline{Definition:} In statistics, linear regression is a linear approach to modeling the relationship between a scalar response (or dependent variable) and one or more explanatory variables (or independent variables). The case of one explanatory variable is called simple linear regression. For more than one explanatory variable, the process is called multiple linear regression.
end{frame}
begin{frame}{Simple Linear Regression}
A normal regression equation of the form of;
$Y = hat{alpha} + hat{beta}X + e$\
where Y is the dependent variable and X is the independent variable. e represents the error term and $alpha$ & $beta$ are the intercept and slope coefficients.\
or, $e = Y - hat{alpha} - hat{beta}X $
end{frame}
begin{frame}
frametitle{Pictures}
begin{figure}
includegraphics[scale=0.5]{latex1.png}
caption{lion!!}
end{figure}
<text>
end{frame}
end{document}
```

I have done some fixes of your code. I have removed `amsmath`

package because `mathtools`

is a robust package than to `amsmath`

; after I have deleted fourier package because the symbol `hat`

doesn't give me a correct visualization. Lastly, I have inserted a test image called `example-image-a`

.

```
documentclass{beamer}
usetheme{Boadilla}
usepackage[utf8]{inputenc}
usepackage{amssymb}
usepackage{mathtools}
usepackage{booktabs}
usepackage{geometry}
usepackage{graphicx,wrapfig}
graphicspath{E:MSESem IVAlgorithmsproject}
usepackage{tabularx}
usepackage{tkz-graph}
usepackage{tikz}
usetikzlibrary{decorations.markings}
tikzstyle{vertex}=[circle, draw, inner sep=0pt, minimum size=6pt]
usepackage{array}
newcommand{vertex}{node[vertex]}
newcounter{Angle}
usepackage{tabto}
usepackage{makecell}
newcommandmyatop[2]{left[{{#1}atop#2}right]} % "wrapper macro"
newcolumntype{Z}{ >{centeringarraybackslash}X }
title{Regression Types}
author{Vaibbhav Devender Kalra}
institute{Madras School of Economics}
date{today}
begin{document}
begin{frame}
titlepage
end{frame}
section{Linear Regression}
subsection{Simple Linear Regression}
begin{frame}
frametitle{Index}
tableofcontents
end{frame}
begin{frame}
frametitle{Linear Regression}
underline{Definition:} In statistics, linear regression is a linear approach to modeling the relationship between a scalar response (or dependent variable) and one or more explanatory variables (or independent variables). The case of one explanatory variable is called simple linear regression. For more than one explanatory variable, the process is called multiple linear regression.
end{frame}
begin{frame}{Simple Linear Regression}
A normal regression equation of the form of;
$Y = hat{alpha} + hat{beta}X + e$\
where Y is the dependent variable and X is the independent variable. e represents the error term and $alpha$ & $beta$ are the intercept and slope coefficients.\
or, $e = Y - hat{alpha} - hat{beta}X $
end{frame}
begin{frame}
frametitle{Pictures}
begin{figure}
includegraphics[scale=0.5]{example-image-a}
caption{lion!!}
end{figure}
end{frame}
end{document}
```

**ADDENDUM:** Considering that it is not necessary to use the path for the correct compilation as rightly observed by, remembering that in this excellent answer that `institute`

also has an optional argument `[...]`

, you could adapt the long title of your institute as follows:

```
documentclass{beamer}
usetheme{Boadilla}
usepackage[utf8]{inputenc}
usepackage{amssymb}
usepackage{mathtools}
usepackage{booktabs}
usepackage{geometry}
usepackage{graphicx,wrapfig}
usepackage{tabularx}
usepackage{tkz-graph}
usepackage{tikz}
usetikzlibrary{decorations.markings}
tikzstyle{vertex}=[circle, draw, inner sep=0pt, minimum size=6pt]
usepackage{array}
newcommand{vertex}{node[vertex]}
newcounter{Angle}
usepackage{tabto}
usepackage{makecell}
newcommandmyatop[2]{left[{{#1}atop#2}right]} % "wrapper macro"
newcolumntype{Z}{ >{centeringarraybackslash}X }
title{Regression Types}
author{}
institute[MSE]{Madras School of Economics}
date{today}
begin{document}
begin{frame}
titlepage
end{frame}
section{Linear Regression}
subsection{Simple Linear Regression}
begin{frame}
frametitle{Index}
tableofcontents
end{frame}
begin{frame}
frametitle{Linear Regression}
underline{Definition:} In statistics, linear regression is a linear approach to modeling the relationship between a scalar response (or dependent variable) and one or more explanatory variables (or independent variables). The case of one explanatory variable is called simple linear regression. For more than one explanatory variable, the process is called multiple linear regression.
end{frame}
begin{frame}{Simple Linear Regression}
A normal regression equation of the form of;
$Y = hat{alpha} + hat{beta}X + e$\
where Y is the dependent variable and X is the independent variable. e represents the error term and $alpha$ & $beta$ are the intercept and slope coefficients.\
or, $e = Y - hat{alpha} - hat{beta}X $
end{frame}
begin{frame}
frametitle{Pictures}
begin{figure}
includegraphics[scale=0.5]{example-image-a}
caption{lion!!}
end{figure}
end{frame}
end{document}
```

Answered by Sebastiano on January 5, 2022

1 Asked on January 13, 2021 by s1m0n3

0 Asked on January 13, 2021

1 Asked on January 13, 2021 by alejandra-bentez

2 Asked on January 12, 2021 by photosynthetic

3 Asked on January 12, 2021

1 Asked on January 12, 2021 by owl-surojit

1 Asked on January 12, 2021

1 Asked on January 12, 2021 by linusdielinse

1 Asked on January 12, 2021 by aj98

3 Asked on January 12, 2021 by dustin

Get help from others!

Recent Answers

- haakon.io on Why fry rice before boiling?
- Lex on Does Google Analytics track 404 page responses as valid page views?
- Jon Church on Why fry rice before boiling?
- Joshua Engel on Why fry rice before boiling?
- Peter Machado on Why fry rice before boiling?

Recent Questions

- How Do I Get The Ifruit App Off Of Gta 5 / Grand Theft Auto 5
- Iv’e designed a space elevator using a series of lasers. do you know anybody i could submit the designs too that could manufacture the concept and put it to use
- Need help finding a book. Female OP protagonist, magic
- Why is the WWF pending games (“Your turn”) area replaced w/ a column of “Bonus & Reward”gift boxes?
- Does Google Analytics track 404 page responses as valid page views?

© 2023 AnswerBun.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP